{"title":"A Generalization of LASSO Modeling via Bayesian Interpretation","authors":"Gayan Warahena-Liyanage, F. Famoye, Carl Lee","doi":"10.17713/ajs.v52i4.1455","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a generalized LASSO regression model that is derived using a generalized Laplace (GL) distribution. Five different GL distributions are obtained through the T -R{Y } framework with quantile functions of standard uniform, Weibull, log-logistic, logistic, and extreme value distributions. The properties, including quantile function, mode, and Shannon entropy of these GL distributions are derived. A particular case of GL distributions called the beta-Laplace distribution is explored. Some additional components to the constraint in the ordinary LASSO regression model are obtained through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric interpretations of these additional components are presented. The effects of the parameters from beta-Laplace distribution in the generalized LASSO regression model are also discussed. Two real data sets are analyzed to illustrate the flexibility and usefulness of the generalized LASSO regression model in the process of variable selection with better prediction performance. Consequently, this research study demonstrates that more flexible statistical distributions can be used to enhance LASSO in terms of flexibility in variable selection and shrinkage with better prediction.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i4.1455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to introduce a generalized LASSO regression model that is derived using a generalized Laplace (GL) distribution. Five different GL distributions are obtained through the T -R{Y } framework with quantile functions of standard uniform, Weibull, log-logistic, logistic, and extreme value distributions. The properties, including quantile function, mode, and Shannon entropy of these GL distributions are derived. A particular case of GL distributions called the beta-Laplace distribution is explored. Some additional components to the constraint in the ordinary LASSO regression model are obtained through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric interpretations of these additional components are presented. The effects of the parameters from beta-Laplace distribution in the generalized LASSO regression model are also discussed. Two real data sets are analyzed to illustrate the flexibility and usefulness of the generalized LASSO regression model in the process of variable selection with better prediction performance. Consequently, this research study demonstrates that more flexible statistical distributions can be used to enhance LASSO in terms of flexibility in variable selection and shrinkage with better prediction.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.