A Generalization of LASSO Modeling via Bayesian Interpretation

IF 0.6 Q4 STATISTICS & PROBABILITY
Gayan Warahena-Liyanage, F. Famoye, Carl Lee
{"title":"A Generalization of LASSO Modeling via Bayesian Interpretation","authors":"Gayan Warahena-Liyanage, F. Famoye, Carl Lee","doi":"10.17713/ajs.v52i4.1455","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a generalized LASSO regression model that is derived using a generalized Laplace (GL) distribution. Five different GL distributions are obtained through the T -R{Y } framework with quantile functions of standard uniform, Weibull, log-logistic, logistic, and extreme value distributions. The properties, including quantile function, mode, and Shannon entropy of these GL distributions are derived. A particular case of GL distributions called the beta-Laplace distribution is explored. Some additional components to the constraint in the ordinary LASSO regression model are obtained through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric interpretations of these additional components are presented. The effects of the parameters from beta-Laplace distribution in the generalized LASSO regression model are also discussed. Two real data sets are analyzed to illustrate the flexibility and usefulness of the generalized LASSO regression model in the process of variable selection with better prediction performance. Consequently, this research study demonstrates that more flexible statistical distributions can be used to enhance LASSO in terms of flexibility in variable selection and shrinkage with better prediction.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i4.1455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to introduce a generalized LASSO regression model that is derived using a generalized Laplace (GL) distribution. Five different GL distributions are obtained through the T -R{Y } framework with quantile functions of standard uniform, Weibull, log-logistic, logistic, and extreme value distributions. The properties, including quantile function, mode, and Shannon entropy of these GL distributions are derived. A particular case of GL distributions called the beta-Laplace distribution is explored. Some additional components to the constraint in the ordinary LASSO regression model are obtained through the Bayesian interpretation of LASSO with beta-Laplace priors. The geometric interpretations of these additional components are presented. The effects of the parameters from beta-Laplace distribution in the generalized LASSO regression model are also discussed. Two real data sets are analyzed to illustrate the flexibility and usefulness of the generalized LASSO regression model in the process of variable selection with better prediction performance. Consequently, this research study demonstrates that more flexible statistical distributions can be used to enhance LASSO in terms of flexibility in variable selection and shrinkage with better prediction.
基于贝叶斯解释的LASSO模型推广
本文的目的是介绍一个广义LASSO回归模型,该模型是利用广义拉普拉斯(GL)分布推导出来的。通过T -R{Y}框架得到五种不同的GL分布,分位数函数分别为标准均匀分布、威布尔分布、对数-logistic分布、logistic分布和极值分布。推导了这些GL分布的分位数函数、模态和Shannon熵等性质。本文探讨了GL分布的一种特殊情况,即β -拉普拉斯分布。利用拉普拉斯先验对LASSO进行贝叶斯解释,得到了普通LASSO回归模型中约束的一些附加分量。给出了这些附加分量的几何解释。讨论了拉普拉斯分布参数对广义LASSO回归模型的影响。通过对两个实际数据集的分析,说明广义LASSO回归模型在变量选择过程中的灵活性和实用性,具有较好的预测性能。因此,本研究表明,更灵活的统计分布可以增强LASSO在变量选择和收缩方面的灵活性,并具有更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信