{"title":"A novel Bayesian method for fitting parametric and non-parametric models to noisy data","authors":"M. Werman, D. Keren","doi":"10.1109/CVPR.1999.784964","DOIUrl":null,"url":null,"abstract":"We offer a simple paradigm for fitting models, parametric and non-parametric, to noisy data, which resolves some of the problems associated with classic MSE algorithms. This is done by considering each point on the model as a possible source for each data point. The paradigm also allows to solve problems which are not defined in the classical MSE approach, such as fitting a segment (as opposed to a line). It is shown to be non-biased, and to achieve excellent results for general curves, even in the presence of strong discontinuities. Results are shown for a number of fitting problems, including lines, circles, segments, and general curves, contaminated by Gaussian and uniform noise.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"12 1","pages":"552-558 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We offer a simple paradigm for fitting models, parametric and non-parametric, to noisy data, which resolves some of the problems associated with classic MSE algorithms. This is done by considering each point on the model as a possible source for each data point. The paradigm also allows to solve problems which are not defined in the classical MSE approach, such as fitting a segment (as opposed to a line). It is shown to be non-biased, and to achieve excellent results for general curves, even in the presence of strong discontinuities. Results are shown for a number of fitting problems, including lines, circles, segments, and general curves, contaminated by Gaussian and uniform noise.