Classification of Traffic Congestion in Indonesia Using the Naive Bayes Classification Method

IF 2.1
Abdul Robi Padri, Asro Asro, I. Indra
{"title":"Classification of Traffic Congestion in Indonesia Using the Naive Bayes Classification Method","authors":"Abdul Robi Padri, Asro Asro, I. Indra","doi":"10.58344/jws.v2i6.285","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to analyze the accuracy of congestion data using Google Colab in detecting congestion by the province in Indonesia the author tries to test strategies for dealing with congestion in the Indonesian region by utilizing the Naïve Bayes method. In this journal, apply with Google Collab . This research uses data that comes from crawling data on Twitter. Using the Naive Bayes method to find the shortest route is efficient and not congested. Implementation of online school transportation using the naive Bayes method in minimizing travel costs to pick up students can reduce traffic jams, reduce accidents, reduce student tardiness, and minimize travel costs. The Naive Bayes method can be used to identify relevant information about traffic jams in Indonesia through Twitter data with a good degree of accuracy. These results can assist decision-making and strategic planning in overcoming the problem of traffic congestion in Indonesia. Therefore, this research implies that it can help improve the accuracy of traffic congestion data in Indonesia. By using Google Colab, more advanced analysis methods and machine learning algorithms can be applied to process the existing traffic data. Additionally, utilizing Google Colab allows for fast and efficient data processing.","PeriodicalId":45058,"journal":{"name":"World Journal of Science Technology and Sustainable Development","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Science Technology and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58344/jws.v2i6.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research is to analyze the accuracy of congestion data using Google Colab in detecting congestion by the province in Indonesia the author tries to test strategies for dealing with congestion in the Indonesian region by utilizing the Naïve Bayes method. In this journal, apply with Google Collab . This research uses data that comes from crawling data on Twitter. Using the Naive Bayes method to find the shortest route is efficient and not congested. Implementation of online school transportation using the naive Bayes method in minimizing travel costs to pick up students can reduce traffic jams, reduce accidents, reduce student tardiness, and minimize travel costs. The Naive Bayes method can be used to identify relevant information about traffic jams in Indonesia through Twitter data with a good degree of accuracy. These results can assist decision-making and strategic planning in overcoming the problem of traffic congestion in Indonesia. Therefore, this research implies that it can help improve the accuracy of traffic congestion data in Indonesia. By using Google Colab, more advanced analysis methods and machine learning algorithms can be applied to process the existing traffic data. Additionally, utilizing Google Colab allows for fast and efficient data processing.
基于朴素贝叶斯分类方法的印尼交通拥堵分类
本研究的目的是分析拥堵数据的准确性使用谷歌Colab在印度尼西亚省检测拥堵,作者试图测试策略,利用Naïve贝叶斯方法来处理印度尼西亚地区的拥堵。在这个日志中,与Google协作应用。这项研究使用的数据来自于Twitter上的抓取数据。使用朴素贝叶斯方法寻找最短的路径是有效的,而且不拥挤。利用朴素贝叶斯方法实现在线接送接送学生的出行成本最小化,可以减少交通堵塞,减少事故,减少学生迟到,使出行成本最小化。朴素贝叶斯方法可以通过Twitter数据识别印度尼西亚交通拥堵的相关信息,具有很好的准确性。这些结果可以帮助决策和战略规划,以克服印尼的交通拥堵问题。因此,本研究可以帮助提高印尼交通拥堵数据的准确性。通过使用Google Colab,可以应用更先进的分析方法和机器学习算法来处理现有的交通数据。此外,利用Google Colab可以实现快速高效的数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Science Technology and Sustainable Development
World Journal of Science Technology and Sustainable Development GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信