An analysis of ELM approximate error based on random weight matrix

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ran Wang, S. Kwong, D. D. Wang
{"title":"An analysis of ELM approximate error based on random weight matrix","authors":"Ran Wang, S. Kwong, D. D. Wang","doi":"10.1142/S0218488513400114","DOIUrl":null,"url":null,"abstract":"It is experimentally observed that the approximate errors of extreme learning machine (ELM) are dependent on the uniformity of training samples after the network architecture is fixed, and the uniformity, which is usually measured by the variance of distances among samples, varies with the linear transformation induced by the random weight matrix. By analyzing the dimension increase process in ELM, this paper gives an approximate relation between the uniformities before and after the linear transformation. Furthermore, by restricting ELM with a two-dimensional space, it gives an upper bound of ELM approximate error which is dependent on the distributive uniformity of training samples. The analytic results provide some useful guidelines to make clear the impact of random weights on ELM approximate ability and improve ELM prediction accuracy.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"96 1","pages":"1-12"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 9

Abstract

It is experimentally observed that the approximate errors of extreme learning machine (ELM) are dependent on the uniformity of training samples after the network architecture is fixed, and the uniformity, which is usually measured by the variance of distances among samples, varies with the linear transformation induced by the random weight matrix. By analyzing the dimension increase process in ELM, this paper gives an approximate relation between the uniformities before and after the linear transformation. Furthermore, by restricting ELM with a two-dimensional space, it gives an upper bound of ELM approximate error which is dependent on the distributive uniformity of training samples. The analytic results provide some useful guidelines to make clear the impact of random weights on ELM approximate ability and improve ELM prediction accuracy.
基于随机权矩阵的ELM近似误差分析
实验发现,在网络结构固定后,极限学习机(ELM)的近似误差依赖于训练样本的均匀性,而均匀性通常由样本间距离的方差来衡量,随随机权矩阵引起的线性变换而变化。通过分析ELM的增维过程,给出了线性变换前后均匀性的近似关系。此外,通过用二维空间约束ELM,给出了依赖于训练样本分布均匀性的ELM近似误差的上界。分析结果为明确随机权值对ELM近似能力的影响,提高ELM预测精度提供了有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信