Accurate energy expenditure estimation using smartphone sensors

A. Pande, Yunze Zeng, Aveek K. Das, P. Mohapatra, S. Miyamoto, E. Seto, E. Henricson, Jay J. Han
{"title":"Accurate energy expenditure estimation using smartphone sensors","authors":"A. Pande, Yunze Zeng, Aveek K. Das, P. Mohapatra, S. Miyamoto, E. Seto, E. Henricson, Jay J. Han","doi":"10.1145/2534088.2534099","DOIUrl":null,"url":null,"abstract":"Accurate and online Energy Expenditure Estimation (EEE) utilizing small wearable sensors is a difficult task with most existing schemes. In this work, we focus on accurate EEE for tracking ambulatory activities of a common smartphone user. We used existing smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately detect EEE. Using Artificial Neural Networks, a machine learning technique, a generic regression model for EEE is built that yields upto 83% correlation with actual Energy Expenditure (EE). Using barometer data, in addition to accelerometry is found to significantly improve EEE performance (upto 10%). We compare our results against state-of-the-art Calorimetry Equations (CE) and consumer electronics devices (Fitbit and Nike+ Fuel Band).","PeriodicalId":91386,"journal":{"name":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","volume":"30 1","pages":"19:1-19:2"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Wireless Health ... [electronic resource]. Wireless Health (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534088.2534099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Accurate and online Energy Expenditure Estimation (EEE) utilizing small wearable sensors is a difficult task with most existing schemes. In this work, we focus on accurate EEE for tracking ambulatory activities of a common smartphone user. We used existing smartphone sensors (accelerometer and barometer sensor), sampled at low frequency, to accurately detect EEE. Using Artificial Neural Networks, a machine learning technique, a generic regression model for EEE is built that yields upto 83% correlation with actual Energy Expenditure (EE). Using barometer data, in addition to accelerometry is found to significantly improve EEE performance (upto 10%). We compare our results against state-of-the-art Calorimetry Equations (CE) and consumer electronics devices (Fitbit and Nike+ Fuel Band).
使用智能手机传感器进行准确的能量消耗估算
利用小型可穿戴传感器进行准确和在线的能量消耗估算(EEE)是大多数现有方案的难点。在这项工作中,我们专注于准确的EEE,以跟踪普通智能手机用户的动态活动。我们使用现有的智能手机传感器(加速度计和气压计传感器)进行低频采样,以准确检测EEE。利用人工神经网络(一种机器学习技术),建立了EEE的通用回归模型,与实际能量消耗(EE)的相关性高达83%。使用气压计数据,除了加速度测量外,还发现显著提高了EEE性能(高达10%)。我们将结果与最先进的量热方程(CE)和消费电子设备(Fitbit和Nike+ Fuel Band)进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信