Da Zhu, L. Gong, Xiaoyong Qiu, Wenjihao Hu, Jun Huang, Ling Zhang, Vahidoddin Fattahpour, Mahdi Mahmoudi, Jingli Luo, Hongbo Zeng
{"title":"Application of Electroless Nickel Coating as a Scaling Resistant Alloy in Thermal Production","authors":"Da Zhu, L. Gong, Xiaoyong Qiu, Wenjihao Hu, Jun Huang, Ling Zhang, Vahidoddin Fattahpour, Mahdi Mahmoudi, Jingli Luo, Hongbo Zeng","doi":"10.2118/190749-MS","DOIUrl":null,"url":null,"abstract":"\n The scaling has been found to be a major problem in thermal production, such as in the Steam-Assisted Gravity Drainage (SAGD) operation. In addition to providing a favorite environment for corrosion, scaling could result in extreme plugging in sand control devices. Therefore, any coatings for the equipment and completion in thermal production should provide significant anti-scaling surface properties.\n This paper presents a detailed study, including field and laboratory testing, on application of the Electroless Nickel Coating (EN-coating) in thermal production environment. Initially, EN-coated and uncoated carbon steel samples were tested in laboratory to assess the scale, hardness and adhesion of inorganic and organic materials.\n Successful laboratory testing lead to a field testing plan, which involves deploying the EN-coated and uncoated samples into a horizontal well for thermal production. The specimens were recovered after certain time and a comprehensive X-ray Photoelectron Spectroscopy (XPS) and Energy-Dispersive Spectroscopy (EDS) were performed to assess accumulation of fouling substances on EN-coated and uncoated carbon steel.\n This study suggests the application of the EN-coating technology to solve the problems caused by scale, and adhesion of organic and inorganic material in thermal production. The comprehensive laboratory testing and field data from the SAGD wells shows that EN-coating significantly improves the well integrity in the harsh thermal production environment.","PeriodicalId":10969,"journal":{"name":"Day 2 Thu, June 21, 2018","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Thu, June 21, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190749-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The scaling has been found to be a major problem in thermal production, such as in the Steam-Assisted Gravity Drainage (SAGD) operation. In addition to providing a favorite environment for corrosion, scaling could result in extreme plugging in sand control devices. Therefore, any coatings for the equipment and completion in thermal production should provide significant anti-scaling surface properties.
This paper presents a detailed study, including field and laboratory testing, on application of the Electroless Nickel Coating (EN-coating) in thermal production environment. Initially, EN-coated and uncoated carbon steel samples were tested in laboratory to assess the scale, hardness and adhesion of inorganic and organic materials.
Successful laboratory testing lead to a field testing plan, which involves deploying the EN-coated and uncoated samples into a horizontal well for thermal production. The specimens were recovered after certain time and a comprehensive X-ray Photoelectron Spectroscopy (XPS) and Energy-Dispersive Spectroscopy (EDS) were performed to assess accumulation of fouling substances on EN-coated and uncoated carbon steel.
This study suggests the application of the EN-coating technology to solve the problems caused by scale, and adhesion of organic and inorganic material in thermal production. The comprehensive laboratory testing and field data from the SAGD wells shows that EN-coating significantly improves the well integrity in the harsh thermal production environment.