Synthesis Condition and Treatment Assisted Tuning of Structural, Magnetic Properties and Bandgap of Ni Nano Ferrite

Kane S N
{"title":"Synthesis Condition and Treatment Assisted Tuning of Structural, Magnetic Properties and Bandgap of Ni Nano Ferrite","authors":"Kane S N","doi":"10.19080/omcij.2019.09.555768","DOIUrl":null,"url":null,"abstract":"We report synthesis condition, and thermal treatment assisted tuning of structural, magnetic properties, and bandgap of Ni nano ferrite. Experimental techniques of x-ray diffraction ‘XRD,’ vibration sample magnetometry, Ultraviolet-visible (UV-Vis) diffuse reflectance measurements, Scanning Electron Microscopy ‘SEM,’ Energy Dispersive spectroscopy ‘EDS’ measurements, were used to study the synthesized samples. XRD verify the formation of nano spinel ferrite phase (grain diameter: 38.3-39.2nm), and incorporation of Ni, Fe in spinel lattice, with lattice parameter (0.8345-0.8352nm), which also shows the presence of α -Fe 2 O 3 phase. Results reveal that synthesis condition, and thermal treatment show: a) SEM images with non-homogeneous particle size dispersion, particle agglomeration, while EDS confirms the presence of all elements in studied NiFe 2 O 4 samples, b) non-equilibrium cation distribution, modification of inversion parameter, oxygen parameter, c) strengthening of A-O-B, A-O-A and weakening of B-O-B interaction super-exchange interactions, d) fine-tuning of bandgap (1.39 eV-1.68 eV), and depends on structural properties, e) observed magnetic properties are a collective effect of non-equilibrium cationic distribution; modification of A-O-B, A-O-A, B-O-B super-exchange interactions, and surface spin-canting. Prospective applications based on synthesized nano ferrites are also discussed. Thus, in this work we report, sol-gel auto-combustion synthesis of NiFe 2 O 4 : by varying synthesis conditions (via microwave-assisted sol-gel synthesis, conventional sol-gel synthesis in dry gel form), and post-preparation thermal annealing, to tune structural, magnetic properties and bandgap energy. Prepared samples are studied by x-ray diffraction ‘XRD,’ vibration sample magnetometry, Ultraviolet-visible (UV-Vis) diffuse reflectance measurements, Scanning Electron Microscopy SEM,’ Energy Dispersive spectroscopy ‘EDS’ measurements.","PeriodicalId":19547,"journal":{"name":"Organic & Medicinal Chemistry International Journal","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Medicinal Chemistry International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/omcij.2019.09.555768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report synthesis condition, and thermal treatment assisted tuning of structural, magnetic properties, and bandgap of Ni nano ferrite. Experimental techniques of x-ray diffraction ‘XRD,’ vibration sample magnetometry, Ultraviolet-visible (UV-Vis) diffuse reflectance measurements, Scanning Electron Microscopy ‘SEM,’ Energy Dispersive spectroscopy ‘EDS’ measurements, were used to study the synthesized samples. XRD verify the formation of nano spinel ferrite phase (grain diameter: 38.3-39.2nm), and incorporation of Ni, Fe in spinel lattice, with lattice parameter (0.8345-0.8352nm), which also shows the presence of α -Fe 2 O 3 phase. Results reveal that synthesis condition, and thermal treatment show: a) SEM images with non-homogeneous particle size dispersion, particle agglomeration, while EDS confirms the presence of all elements in studied NiFe 2 O 4 samples, b) non-equilibrium cation distribution, modification of inversion parameter, oxygen parameter, c) strengthening of A-O-B, A-O-A and weakening of B-O-B interaction super-exchange interactions, d) fine-tuning of bandgap (1.39 eV-1.68 eV), and depends on structural properties, e) observed magnetic properties are a collective effect of non-equilibrium cationic distribution; modification of A-O-B, A-O-A, B-O-B super-exchange interactions, and surface spin-canting. Prospective applications based on synthesized nano ferrites are also discussed. Thus, in this work we report, sol-gel auto-combustion synthesis of NiFe 2 O 4 : by varying synthesis conditions (via microwave-assisted sol-gel synthesis, conventional sol-gel synthesis in dry gel form), and post-preparation thermal annealing, to tune structural, magnetic properties and bandgap energy. Prepared samples are studied by x-ray diffraction ‘XRD,’ vibration sample magnetometry, Ultraviolet-visible (UV-Vis) diffuse reflectance measurements, Scanning Electron Microscopy SEM,’ Energy Dispersive spectroscopy ‘EDS’ measurements.
镍纳米铁氧体的合成条件及处理辅助结构、磁性能和带隙调谐
本文报道了镍纳米铁氧体的合成条件,以及热处理对镍纳米铁氧体结构、磁性能和带隙的影响。采用x射线衍射(XRD)、振动样品磁强计、紫外-可见(UV-Vis)漫反射测量、扫描电镜(SEM)、能谱(EDS)测量等实验技术对合成样品进行了研究。XRD验证了纳米尖晶石铁素体相(晶粒直径38.3 ~ 39.2nm)的形成,Ni、Fe在尖晶石晶格中掺入,晶格参数为0.8345 ~ 0.8352nm,同时α - fe2o3相的存在。结果表明,合成条件和热处理表明:a) SEM图像具有非均匀的粒度分散和颗粒团聚,而EDS证实了所研究的NiFe 2o4样品中所有元素的存在;b)非平衡阳离子分布,反演参数,氧参数的修改;c) a -O- b, a -O- a相互作用的增强和b -O- b相互作用超交换相互作用的减弱;d)带隙的微调(1.39 eV-1.68 eV),并取决于结构性质。E)观察到的磁性是一种非平衡阳离子分布的集体效应;A-O-B、A-O-A、B-O-B超交换作用的修饰和表面自旋倾斜。并讨论了基于合成纳米铁氧体的应用前景。因此,在这项工作中,我们报告了nife2o4的溶胶-凝胶自燃烧合成:通过不同的合成条件(通过微波辅助的溶胶-凝胶合成,传统的干凝胶形式的溶胶-凝胶合成),以及制备后的热退火,来调整结构,磁性能和带隙能量。通过x射线衍射(XRD)、振动样品磁强计、紫外可见(UV-Vis)漫反射测量、扫描电子显微镜(SEM)、能量色散光谱(EDS)测量对制备的样品进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信