{"title":"Study on the control mode of proton membrane fuel cell system","authors":"Jingsen Huang, Min Wan","doi":"10.54097/ije.v2i1.5612","DOIUrl":null,"url":null,"abstract":" In the era of energy shortage, proton membrane fuel cell using hydrogen as energy source has attracted great attention because of its advantages of zero emission and high energy conversion efficiency. Hydrogen supply system is an important part of fuel cell system. Efficient hydrogen supply system can improve hydrogen utilization rate and relieve anode flooding and hydrogen hunger with optimal exhaust drainage time. At the same time, the pressure difference between cathode and anode must be maintained within a certain range when proton membrane fuel cells are running. Reasonable pressure control algorithm can improve the safety and stability of proton membrane fuel cells. In this paper, based on the model of the total fuel cell system, the anodic fuzzy PID pressure control algorithm and the cathode fuzzy PID pressure following control algorithm for proton membrane fuel cells are designed, and the effectiveness of the fuel cell pressure control algorithm is studied through simulation analysis.","PeriodicalId":14093,"journal":{"name":"International journal of energy science","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of energy science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/ije.v2i1.5612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of energy shortage, proton membrane fuel cell using hydrogen as energy source has attracted great attention because of its advantages of zero emission and high energy conversion efficiency. Hydrogen supply system is an important part of fuel cell system. Efficient hydrogen supply system can improve hydrogen utilization rate and relieve anode flooding and hydrogen hunger with optimal exhaust drainage time. At the same time, the pressure difference between cathode and anode must be maintained within a certain range when proton membrane fuel cells are running. Reasonable pressure control algorithm can improve the safety and stability of proton membrane fuel cells. In this paper, based on the model of the total fuel cell system, the anodic fuzzy PID pressure control algorithm and the cathode fuzzy PID pressure following control algorithm for proton membrane fuel cells are designed, and the effectiveness of the fuel cell pressure control algorithm is studied through simulation analysis.