Some properties of certain simple flat extensions

M. Kanemitsu, KEN-ICHI Yoshida
{"title":"Some properties of certain simple flat extensions","authors":"M. Kanemitsu, KEN-ICHI Yoshida","doi":"10.5036/MJIU.29.25","DOIUrl":null,"url":null,"abstract":"The ring R such that R[α]∩R[α-1]=R is studied by Ratliff-Mirbagheri ([5]). In [7], they call α anti-integral over R if R[α]∩R[α-1]=R. In [6], the concept of an anti-integral element over R was extended to high degree case. Related papers of birational anti-integral extensions and high degree anti-integral extensions are [1], [2] and [6]. In this paper, we study the simple ring extension A/R dividing to B/R and A/B. In particular, let A=R[α] be a, primitive extension over R (see Definition 2) and put B=R[α]∩R[α-1]. Then the following statements hold. 1) A/B is flat. 2) A/R is flat if and only if B/R is flat. We give the following definition (cf. [6]).","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"47 1","pages":"25-29"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.29.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ring R such that R[α]∩R[α-1]=R is studied by Ratliff-Mirbagheri ([5]). In [7], they call α anti-integral over R if R[α]∩R[α-1]=R. In [6], the concept of an anti-integral element over R was extended to high degree case. Related papers of birational anti-integral extensions and high degree anti-integral extensions are [1], [2] and [6]. In this paper, we study the simple ring extension A/R dividing to B/R and A/B. In particular, let A=R[α] be a, primitive extension over R (see Definition 2) and put B=R[α]∩R[α-1]. Then the following statements hold. 1) A/B is flat. 2) A/R is flat if and only if B/R is flat. We give the following definition (cf. [6]).
某些简单平面扩展的一些性质
Ratliff-Mirbagheri([5])研究了R[α]∩R[α-1]=R的环R。在[7]中,如果R[α]∩R[α-1]=R,他们称α为R上的反积分。在[6]中,将R上的反积分元素的概念推广到高次情况。两族反积分推广和高次反积分推广的相关论文有[1]、[2]和[6]。本文研究了简单环扩展A/R除为B/R和A/B。特别地,设A=R[α]是A,在R上的原始扩展(见定义2),令B=R[α]∩R[α-1]。那么下列陈述成立。A/B是平的。当且仅当B/R为平时,A/R为平。我们给出如下定义(参见[6])。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信