{"title":"On the gradient flow of a one-homogeneous functional","authors":"A. Briani, A. Chambolle, M. Novaga, G. Orlandi","doi":"10.1142/S1793744211000461","DOIUrl":null,"url":null,"abstract":"We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele–Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for the Total Variation flow in dimension 1, and easily deduce basic qualitative properties, concerning in particular the \"staircasing effect\".","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"284 1","pages":"617-635"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793744211000461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 24
Abstract
We consider the gradient flow of a one-homogeneous functional, whose dual involves the derivative of a constrained scalar function. We show in this case that the gradient flow is related to a weak, generalized formulation of a Hele–Shaw flow. The equivalence follows from a variational representation, which is a variant of well-known variational representations for the Hele–Shaw problem. As a consequence we get existence and uniqueness of a weak solution to the Hele–Shaw flow. We also obtain an explicit representation for the Total Variation flow in dimension 1, and easily deduce basic qualitative properties, concerning in particular the "staircasing effect".
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.