On Same-Realization Prediction in the Multivariate Long Memory Process with the VAR Procedure

Wen-Jen Tsay, Cindy S.H. Wang
{"title":"On Same-Realization Prediction in the Multivariate Long Memory Process with the VAR Procedure","authors":"Wen-Jen Tsay, Cindy S.H. Wang","doi":"10.2139/ssrn.3371610","DOIUrl":null,"url":null,"abstract":"This paper proposes an easy-to-implement approach to forecasting the multivariate long memory process on same realization and further examines its usefulness on forecasting multivariate volatility series. This procedure bases on the extension of the analysis of Lewis and Reinsel (1985) to the multivariate fractionally integrated model, that is, the vector autoregressive (VAR (<i>k</i>)) model to approximate the multivariate long memory system. Under suitable assumptions on the long memory parameter <i>d</i> and lag length <i>k</i>, the consistency of the multivariate least squares (LS) coefficient estimator and that of the residual covariance matrix estimator Σ̂ <sub>k</sub> are derived. In addition, the one-step ahead prediction error generated by the VAR(<i>k</i>)-approximation model is shown to converge in probability to its population counterpart, even though the exact orders of the multivariate long memory process are <i>unknown</i> and the long memory parameter <i>d</i> varies across each series of the multivariate long memory model. Moreover, insights from our theoretical analysis are confirmed by a set of Monte Carlo experiments, which are consistent with the findings of Lewis and Reinsel (1985) for the short memory process. An empirical application to the multivariate realized and option implied volatility series illustrates the usefulness of our forecasting procedure, when compared to the current volatility forecasting methods.<br>","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3371610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an easy-to-implement approach to forecasting the multivariate long memory process on same realization and further examines its usefulness on forecasting multivariate volatility series. This procedure bases on the extension of the analysis of Lewis and Reinsel (1985) to the multivariate fractionally integrated model, that is, the vector autoregressive (VAR (k)) model to approximate the multivariate long memory system. Under suitable assumptions on the long memory parameter d and lag length k, the consistency of the multivariate least squares (LS) coefficient estimator and that of the residual covariance matrix estimator Σ̂ k are derived. In addition, the one-step ahead prediction error generated by the VAR(k)-approximation model is shown to converge in probability to its population counterpart, even though the exact orders of the multivariate long memory process are unknown and the long memory parameter d varies across each series of the multivariate long memory model. Moreover, insights from our theoretical analysis are confirmed by a set of Monte Carlo experiments, which are consistent with the findings of Lewis and Reinsel (1985) for the short memory process. An empirical application to the multivariate realized and option implied volatility series illustrates the usefulness of our forecasting procedure, when compared to the current volatility forecasting methods.
VAR过程在多元长记忆过程中的同实现预测
本文提出了一种易于实现的多变量长记忆过程预测方法,并进一步检验了该方法在预测多变量波动序列上的有效性。本程序基于Lewis和Reinsel(1985)的分析扩展到多元分数积分模型,即向量自回归(VAR (k))模型来近似多元长记忆系统。在适当的长记忆参数d和滞后长度k的假设下,推导了多元最小二乘(LS)系数估计量和残差协方差矩阵估计量Σ * k的一致性。此外,VAR(k)近似模型产生的一步预测误差在概率上收敛于它的种群对应,即使多元长记忆过程的确切顺序是未知的,并且长记忆参数d在多元长记忆模型的每个系列中都是不同的。此外,我们的理论分析的见解得到了一组蒙特卡洛实验的证实,这与Lewis和Reinsel(1985)关于短时记忆过程的发现一致。对多元已实现波动率和期权隐含波动率序列的实证应用表明,与目前的波动率预测方法相比,我们的预测方法是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信