Dynamical bar-mode instability in spinning bosonic stars

F. Di Giovanni, N. Sanchis-Gual, P. Cerdá-Durán, M. Zilhão, C. Herdeiro, J. Font, E. Radu
{"title":"Dynamical bar-mode instability in spinning bosonic stars","authors":"F. Di Giovanni, N. Sanchis-Gual, P. Cerdá-Durán, M. Zilhão, C. Herdeiro, J. Font, E. Radu","doi":"10.1103/physrevd.102.124009","DOIUrl":null,"url":null,"abstract":"Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca particles with non-zero angular momentum. In a recent work we found that the scalar stars are transient due to a non-axisymmetric instability which triggers the loss of angular momentum. We further study the dynamical formation of SBSs using 3-dimensional numerical-relativity simulations of the Einstein-(massive, complex)Klein-Gordon system and of the Einstein-(complex)Proca system. We incorporate a quartic self-interaction potential in the scalar case to gauge its effect on the instability; we investigate (m=2) Proca stars to assess their stability; we attempt to relate the instability of SBSs to the growth rate of azimuthal density modes and the existence of a corotation point. We show that: the self-interaction potential can only delay the instability in scalar SBSs; m=2 Proca stars always migrate to the stable m=1 spheroidal family; unstable m=2 Proca stars and m=1 scalar boson stars exhibit a corotation point. This establishes a parallelism with rotating neutron stars affected by dynamical bar-mode instabilities. We compute the gravitational waves (GWs) emitted and investigate the detectability of the waveforms comparing the characteristic strain of the signal with the sensitivity curves of a variety of detectors, computing the signal-to-noise ratio. By assuming that the characteristic damping timescale of the bar-like deformation in SBSs is only set by GWs emission and not by viscosity (unlike in neutron stars), we find that the post-collapse emission could be orders of magnitude more energetic than that of the bar-mode instability itself. Our results indicate that GW observations of SBSs might be within the reach of future experiments, offering a potential means to establish the existence of such stars and to place tight constraints on the mass of the bosonic particle.","PeriodicalId":8455,"journal":{"name":"arXiv: General Relativity and Quantum Cosmology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.124009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca particles with non-zero angular momentum. In a recent work we found that the scalar stars are transient due to a non-axisymmetric instability which triggers the loss of angular momentum. We further study the dynamical formation of SBSs using 3-dimensional numerical-relativity simulations of the Einstein-(massive, complex)Klein-Gordon system and of the Einstein-(complex)Proca system. We incorporate a quartic self-interaction potential in the scalar case to gauge its effect on the instability; we investigate (m=2) Proca stars to assess their stability; we attempt to relate the instability of SBSs to the growth rate of azimuthal density modes and the existence of a corotation point. We show that: the self-interaction potential can only delay the instability in scalar SBSs; m=2 Proca stars always migrate to the stable m=1 spheroidal family; unstable m=2 Proca stars and m=1 scalar boson stars exhibit a corotation point. This establishes a parallelism with rotating neutron stars affected by dynamical bar-mode instabilities. We compute the gravitational waves (GWs) emitted and investigate the detectability of the waveforms comparing the characteristic strain of the signal with the sensitivity curves of a variety of detectors, computing the signal-to-noise ratio. By assuming that the characteristic damping timescale of the bar-like deformation in SBSs is only set by GWs emission and not by viscosity (unlike in neutron stars), we find that the post-collapse emission could be orders of magnitude more energetic than that of the bar-mode instability itself. Our results indicate that GW observations of SBSs might be within the reach of future experiments, offering a potential means to establish the existence of such stars and to place tight constraints on the mass of the bosonic particle.
自旋玻色子恒星的动态棒模不稳定性
旋转玻色子恒星(SBSs)可以由具有非零角动量的标量/Proca粒子的稀释云的引力坍缩形成。在最近的一项工作中,我们发现标量恒星是瞬态的,因为非轴对称不稳定性会导致角动量的损失。我们使用爱因斯坦-(大质量,复杂)Klein-Gordon系统和爱因斯坦-(复杂)Proca系统的三维数值相对论模拟进一步研究了SBSs的动力学形成。我们在标量情况下引入四次自相互作用势来衡量它对不稳定性的影响;我们研究(m=2) Proca星来评估它们的稳定性;我们试图将sbs的不稳定性与方位角密度模态的增长率和同轴点的存在联系起来。结果表明:自相互作用势只能延缓标量sbs的不稳定性;原Proca恒星总是迁移到稳定的m=1球体族;不稳定的m=2 Proca星和m=1标量玻色子星表现出一个旋转点。这建立了受动力棒模不稳定性影响的旋转中子星的平行性。我们计算了发射的引力波(GWs),并研究了波形的可探测性,将信号的特征应变与各种探测器的灵敏度曲线进行比较,计算了信噪比。假设sbs中棒状变形的特征阻尼时间尺度仅由GWs发射而不是由粘度决定(与中子星不同),我们发现坍缩后发射的能量可能比棒状模不稳定性本身的能量高几个数量级。我们的研究结果表明,对sbs的GW观测可能在未来的实验中实现,这为确定此类恒星的存在以及对玻色子粒子的质量施加严格限制提供了一种潜在的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信