Algebraic units, anti-unitary symmetries, and a small catalogue of SICs

I. Bengtsson
{"title":"Algebraic units, anti-unitary symmetries, and a small catalogue of SICs","authors":"I. Bengtsson","doi":"10.26421/QIC20.5-6-3","DOIUrl":null,"url":null,"abstract":"In complex vector spaces maximal sets of equiangular lines, known as SICs, are related to real quadratic number fields in a dimension dependent way. If the dimension is of the form n^2+3, the base field has a fundamental unit of negative norm, and there exists a SIC with anti-unitary symmetry. We give eight examples of exact solutions of this kind, for which we have endeavoured to make them as simple as we can---as a belated reply to the referee of an earlier publication, who claimed that our exact solution in dimension 28 was too complicated to be fit to print. An interesting feature of the simplified solutions is that the components of the fiducial vectors largely consist of algebraic units.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"84 1","pages":"400-417"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC20.5-6-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In complex vector spaces maximal sets of equiangular lines, known as SICs, are related to real quadratic number fields in a dimension dependent way. If the dimension is of the form n^2+3, the base field has a fundamental unit of negative norm, and there exists a SIC with anti-unitary symmetry. We give eight examples of exact solutions of this kind, for which we have endeavoured to make them as simple as we can---as a belated reply to the referee of an earlier publication, who claimed that our exact solution in dimension 28 was too complicated to be fit to print. An interesting feature of the simplified solutions is that the components of the fiducial vectors largely consist of algebraic units.
代数单位,反酉对称,和物理的一个小目录
在复向量空间中,等角线的极大集以维相关的方式与实数二次域相关。如果维数为n^2+3,则基场具有负范数的基本单位,并且存在具有反酉对称的SIC。我们给出了这类精确解的8个例子,我们已经尽力使它们尽可能简单——作为对早期出版物的裁判的迟来的回复,他声称我们在28维的精确解太复杂了,不适合打印。简化解的一个有趣特征是,基准向量的分量主要由代数单位组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信