EDGY: on-device paralinguistic privacy protection

Ranya Aloufi, H. Haddadi, David Boyle
{"title":"EDGY: on-device paralinguistic privacy protection","authors":"Ranya Aloufi, H. Haddadi, David Boyle","doi":"10.1145/3477087.3478382","DOIUrl":null,"url":null,"abstract":"Voice user interfaces and assistants are rapidly entering our lives and becoming singular touchpoints spanning our devices. Raw audio signals collected through these devices contain a host of sensitive paralinguistic information (e.g., emotional patterns) that is transmitted to service providers regardless of deliberate or false triggers. We thus encounter a new generation of privacy risks by using these services. To tackle this issue, we have developed EDGY; a configurable, lightweight, disentangled representation learning framework that transforms and filters high-dimensional voice data to identify and selectively filter sensitive attributes at the edge prior to offloading to the cloud. Our results show that EDGY runs in tens of milliseconds with 0.2% relative improvement in ABX score and minimal performance penalties in learning linguistic representations from raw signals on a CPU and single-core ARM processor with no specialized hardware.","PeriodicalId":62224,"journal":{"name":"世界中学生文摘","volume":"49 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界中学生文摘","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3477087.3478382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Voice user interfaces and assistants are rapidly entering our lives and becoming singular touchpoints spanning our devices. Raw audio signals collected through these devices contain a host of sensitive paralinguistic information (e.g., emotional patterns) that is transmitted to service providers regardless of deliberate or false triggers. We thus encounter a new generation of privacy risks by using these services. To tackle this issue, we have developed EDGY; a configurable, lightweight, disentangled representation learning framework that transforms and filters high-dimensional voice data to identify and selectively filter sensitive attributes at the edge prior to offloading to the cloud. Our results show that EDGY runs in tens of milliseconds with 0.2% relative improvement in ABX score and minimal performance penalties in learning linguistic representations from raw signals on a CPU and single-core ARM processor with no specialized hardware.
设备上的副语言隐私保护
语音用户界面和助手正在迅速进入我们的生活,并成为跨越我们设备的单一接触点。通过这些设备收集的原始音频信号包含大量敏感的副语言信息(例如,情绪模式),无论是否有意或虚假触发,这些信息都会传输给服务提供商。因此,我们在使用这些服务时遇到了新一代的隐私风险。为了解决这个问题,我们开发了EDGY;一个可配置的、轻量级的、解纠缠的表示学习框架,它可以转换和过滤高维语音数据,以便在卸载到云之前识别和选择性地过滤边缘的敏感属性。我们的结果表明,EDGY在几十毫秒内运行,ABX分数相对提高0.2%,并且在没有专门硬件的CPU和单核ARM处理器上从原始信号中学习语言表示的性能损失最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
4051
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信