On domination in signed graphs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
James Joseph, Mayamma Joseph
{"title":"On domination in signed graphs","authors":"James Joseph, Mayamma Joseph","doi":"10.2478/ausi-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this article the concept of domination in signed graphs is examined from an alternate perspective and a new definition of the same is introduced. A vertex subset D of a signed graph S is a dominating set, if for each vertex v not in D there exists a vertex u ∈ D such that the sign of the edge uv is positive. The domination number γ (S) of S is the minimum cardinality among all the dominating sets of S. We obtain certain bounds of γ (S) and present a necessary and su cient condition for a dominating set to be a minimal dominating set. Further, we characterise the signed graphs having small and large values for domination number.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"4 1","pages":"1 - 9"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article the concept of domination in signed graphs is examined from an alternate perspective and a new definition of the same is introduced. A vertex subset D of a signed graph S is a dominating set, if for each vertex v not in D there exists a vertex u ∈ D such that the sign of the edge uv is positive. The domination number γ (S) of S is the minimum cardinality among all the dominating sets of S. We obtain certain bounds of γ (S) and present a necessary and su cient condition for a dominating set to be a minimal dominating set. Further, we characterise the signed graphs having small and large values for domination number.
论符号图中的支配
摘要本文从另一个角度研究了符号图中的支配概念,并引入了符号图中支配的新定义。有符号图S的顶点子集D是支配集,如果对于不在D中的每个顶点v,存在一个顶点u∈D,使得边uv的符号为正。S的支配数γ (S)是S的所有支配集中的最小基数。我们得到了γ (S)的一定界,并给出了一个支配集是最小支配集的必要和充要条件。进一步,我们描述了具有小值和大值的控制数的签名图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信