Starlike functions associated with $ \tanh z $ and Bernardi integral operator

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pratima Rai, A. Çetinkaya, Sushil Kumar
{"title":"Starlike functions associated with $ \\tanh z $ and Bernardi integral operator","authors":"Pratima Rai, A. Çetinkaya, Sushil Kumar","doi":"10.3934/mfc.2022032","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We determine the necessary and sufficient convolution conditions for the starlike functions on the open unit disk and related to some geometric aspects of the function <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\tanh z $\\end{document}</tex-math></inline-formula>. We also determine sharp bounds on second and third order Hermitian-Toeplitz determinants for such functions. Further, we compute estimates on some initial coefficients and the Hankel determinants of third and fourth order. In addition, using the concept of Briot-Bouquet type differential subordination, we establish a subordination inclusion involving Bernardi integral operator.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"29 1","pages":"573-585"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

We determine the necessary and sufficient convolution conditions for the starlike functions on the open unit disk and related to some geometric aspects of the function \begin{document}$ \tanh z $\end{document}. We also determine sharp bounds on second and third order Hermitian-Toeplitz determinants for such functions. Further, we compute estimates on some initial coefficients and the Hankel determinants of third and fourth order. In addition, using the concept of Briot-Bouquet type differential subordination, we establish a subordination inclusion involving Bernardi integral operator.

星形函数关联$ \tanh z $和Bernardi积分算子
We determine the necessary and sufficient convolution conditions for the starlike functions on the open unit disk and related to some geometric aspects of the function \begin{document}$ \tanh z $\end{document}. We also determine sharp bounds on second and third order Hermitian-Toeplitz determinants for such functions. Further, we compute estimates on some initial coefficients and the Hankel determinants of third and fourth order. In addition, using the concept of Briot-Bouquet type differential subordination, we establish a subordination inclusion involving Bernardi integral operator.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信