Relationship between adjacency and distance matrix of graph of diameter two

S. L. Chasanah, Elvi Khairunnisa, Muhammad Yusuf, K. Sugeng
{"title":"Relationship between adjacency and distance matrix of graph of diameter two","authors":"S. L. Chasanah, Elvi Khairunnisa, Muhammad Yusuf, K. Sugeng","doi":"10.19184/ijc.2021.5.2.1","DOIUrl":null,"url":null,"abstract":"The relationship among every pair of vertices in a graph can be represented as a matrix, such as in adjacency matrix and distance matrix. Both adjacency and distance matrices have the same property. Adjacency and distance matrices are both symmetric matrix with diagonals entries equals to 0.  In this paper, we discuss relationships between adjacency matrix and distance matrix of a graph of diameter two, which is D=2(J-I)-A. From this relationship, we  also determine the value of the determinant matrix A+D and the upper bound of determinant of matrix D.","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2021.5.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship among every pair of vertices in a graph can be represented as a matrix, such as in adjacency matrix and distance matrix. Both adjacency and distance matrices have the same property. Adjacency and distance matrices are both symmetric matrix with diagonals entries equals to 0.  In this paper, we discuss relationships between adjacency matrix and distance matrix of a graph of diameter two, which is D=2(J-I)-A. From this relationship, we  also determine the value of the determinant matrix A+D and the upper bound of determinant of matrix D.
直径为2的图的邻接矩阵与距离矩阵的关系
图中每对顶点之间的关系可以表示为一个矩阵,如邻接矩阵和距离矩阵。邻接矩阵和距离矩阵具有相同的性质。邻接矩阵和距离矩阵都是对角线项为0的对称矩阵。本文讨论了直径为2的图D=2(J-I)-A的邻接矩阵与距离矩阵之间的关系。由这个关系,我们还确定了行列式矩阵A+D的值和矩阵D的行列式的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信