Alpha Skew Gaussian Naïve Bayes Classifier

Anderson Ara, F. Louzada
{"title":"Alpha Skew Gaussian Naïve Bayes Classifier","authors":"Anderson Ara, F. Louzada","doi":"10.1142/s0219622021500644","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"7 1","pages":"441-462"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.
Alpha偏高斯Naïve贝叶斯分类器
本文的主要目标是为naïve贝叶斯分类器引入一种新的过程,即alpha偏态高斯naïve贝叶斯(ASGNB),它基于高斯分布应用于连续变量的灵活泛化。作为一个直接的优点,该方法可以适应在单峰或双峰行为中处理不对称的可能性。给出了该方法的估计步骤,并通过仿真研究和不同应用领域的大量真实数据集,对比了该方法的预测性能。当数据中存在双峰不对称时,ASGNB是一种强大的分类任务替代方案,并且在大多数分析情况下,与其他传统分类方法相比,ASGNB的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信