Wind farm control and power curve optimization using induction-based wake model

R. Jahantigh, S. Esmailifar, S. A. Sina
{"title":"Wind farm control and power curve optimization using induction-based wake model","authors":"R. Jahantigh, S. Esmailifar, S. A. Sina","doi":"10.1177/00202940231180624","DOIUrl":null,"url":null,"abstract":"This paper proposes a control strategy to achieve minimum wake-induced power losses in a wind farm. At first, the axial-induction-based wake model is developed to consider the aerodynamic wake interactions among wind turbines. To optimize the generated power of the whole wind farm, the axial induction factor of each wind turbine is calculated by the genetic algorithm. As a supervisory controller, each wind turbine’s optimal axial induction factor calculated by the genetic algorithm is implemented as a setpoint of each wind turbine’s internal controller. In the internal control loop, a comprehensive controller is designed to track the commanded axial induction factor. In the partial load region, the commanded axial induction factor was attained by tuning the generator torque. In the transient and full load regions, the blade pitch angle is tuned to keep the generator speed and torque at the rated values. The performance of the proposed control strategy is investigated through case studies, including three different wind speeds and a time-varying wind speed case in a 3 × 3 wind-farm layout. The simulation results show the satisfactory performance of the proposed approach.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a control strategy to achieve minimum wake-induced power losses in a wind farm. At first, the axial-induction-based wake model is developed to consider the aerodynamic wake interactions among wind turbines. To optimize the generated power of the whole wind farm, the axial induction factor of each wind turbine is calculated by the genetic algorithm. As a supervisory controller, each wind turbine’s optimal axial induction factor calculated by the genetic algorithm is implemented as a setpoint of each wind turbine’s internal controller. In the internal control loop, a comprehensive controller is designed to track the commanded axial induction factor. In the partial load region, the commanded axial induction factor was attained by tuning the generator torque. In the transient and full load regions, the blade pitch angle is tuned to keep the generator speed and torque at the rated values. The performance of the proposed control strategy is investigated through case studies, including three different wind speeds and a time-varying wind speed case in a 3 × 3 wind-farm layout. The simulation results show the satisfactory performance of the proposed approach.
基于诱导尾流模型的风电场控制与功率曲线优化
本文提出了一种使风电场尾流功率损失最小的控制策略。首先,建立了考虑风力机间气动尾流相互作用的轴向诱导尾流模型。为了优化整个风电场的发电功率,采用遗传算法计算各风力机的轴向感应系数。作为监督控制器,通过遗传算法计算出的每台风力机的最优轴向感应系数作为每台风力机内部控制器的设定点实现。在内部控制回路中,设计了一个综合控制器来跟踪所要求的轴向感应系数。在部分负载区,通过调整发电机转矩来获得所需的轴向感应系数。在暂态和满载区域,调整叶片俯仰角度以保持发电机的转速和转矩在额定值。通过3 × 3风电场布局的三种不同风速和时变风速情况,对所提出的控制策略的性能进行了研究。仿真结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信