{"title":"On deficiency problems for graphs","authors":"Andrea Freschi, Joseph Hyde, Andrew Treglown","doi":"10.1017/s0963548321000389","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of <jats:italic>graph deficiency</jats:italic>. Given a global spanning property <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline1.png\" />\n\t\t<jats:tex-math>\n$\\mathcal P$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and a graph <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline2.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, the deficiency <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline3.png\" />\n\t\t<jats:tex-math>\n$\\text{def}(G)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of the graph <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline4.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with respect to the property <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mathcal P$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the smallest non-negative integer <jats:italic>t</jats:italic> such that the join <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline6.png\" />\n\t\t<jats:tex-math>\n$G*K_t$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> has property <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline7.png\" />\n\t\t<jats:tex-math>\n$\\mathcal P$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an <jats:italic>n</jats:italic>-vertex graph <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline8.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> needs to ensure <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline9.png\" />\n\t\t<jats:tex-math>\n$G*K_t$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> contains a <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline10.png\" />\n\t\t<jats:tex-math>\n$K_r$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-factor (for any fixed <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline11.png\" />\n\t\t<jats:tex-math>\n$r\\geq 3$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>). In this paper, we resolve their problem fully. We also give an analogous result that forces <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline12.png\" />\n\t\t<jats:tex-math>\n$G*K_t$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> to contain any fixed bipartite <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000389_inline13.png\" />\n\t\t<jats:tex-math>\n$(n+t)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-vertex graph of bounded degree and small bandwidth.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548321000389","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by analogous questions in the setting of Steiner triple systems and Latin squares, Nenadov, Sudakov and Wagner [Completion and deficiency problems, Journal of Combinatorial Theory Series B, 2020] recently introduced the notion of graph deficiency. Given a global spanning property
$\mathcal P$
and a graph
$G$
, the deficiency
$\text{def}(G)$
of the graph
$G$
with respect to the property
$\mathcal P$
is the smallest non-negative integer t such that the join
$G*K_t$
has property
$\mathcal P$
. In particular, Nenadov, Sudakov and Wagner raised the question of determining how many edges an n-vertex graph
$G$
needs to ensure
$G*K_t$
contains a
$K_r$
-factor (for any fixed
$r\geq 3$
). In this paper, we resolve their problem fully. We also give an analogous result that forces
$G*K_t$
to contain any fixed bipartite
$(n+t)$
-vertex graph of bounded degree and small bandwidth.
受Steiner三重系统和拉丁平方设置中的类似问题的启发,Nenadov, Sudakov和Wagner[补全和缺陷问题,Journal of Combinatorial Theory Series B, 2020]最近引入了图缺陷的概念。给定一个全局生成属性$\mathcal P$和一个图$G$,图$G$相对于属性$\mathcal P$的缺陷$\text{def}(G)$是最小的非负整数t,使得连接$G*K_t$具有属性$\mathcal P$。特别是,Nenadov, Sudakov和Wagner提出了一个问题,确定一个n顶点图$G$需要多少条边来确保$G*K_t$包含一个$K_r$ -因子(对于任何固定的$r\geq 3$)。本文全面解决了这一问题。我们还给出了一个类似的结果,即强制$G*K_t$包含任何有界度和小带宽的固定二部$(n+t)$ -顶点图。
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.