Robust Feature Matching for Distorted Projection by Spherical Cameras

Q1 Computer Science
Hajime Taira, Yuki Inoue, A. Torii, M. Okutomi
{"title":"Robust Feature Matching for Distorted Projection by Spherical Cameras","authors":"Hajime Taira, Yuki Inoue, A. Torii, M. Okutomi","doi":"10.2197/ipsjtcva.7.84","DOIUrl":null,"url":null,"abstract":"In this work, we proposes a simple yet effective method for improving performance of local feature matching among equirectangular cylindrical images, which brings more stable and complete 3D reconstruction by incremental SfM. The key idea is to exiplictly generate synthesized images by rotating the spherical panoramic images and to detect and describe features only from the less distroted area in the rectified panoramic images. We demonstrate that the proposed method is advantageous for both rotational and translational camera motions compared with the standard methods on the synthetic data. We also demonstrate that the proposed feature matching is beneficial for incremental SfM through the experiments on the Pittsburgh Reserach dataset.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"1 1","pages":"84-88"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 17

Abstract

In this work, we proposes a simple yet effective method for improving performance of local feature matching among equirectangular cylindrical images, which brings more stable and complete 3D reconstruction by incremental SfM. The key idea is to exiplictly generate synthesized images by rotating the spherical panoramic images and to detect and describe features only from the less distroted area in the rectified panoramic images. We demonstrate that the proposed method is advantageous for both rotational and translational camera motions compared with the standard methods on the synthetic data. We also demonstrate that the proposed feature matching is beneficial for incremental SfM through the experiments on the Pittsburgh Reserach dataset.
球面相机畸变投影的鲁棒特征匹配
本文提出了一种简单而有效的方法来提高等矩形圆柱图像之间的局部特征匹配性能,通过增量SfM实现更稳定、更完整的三维重建。其关键思想是通过旋转球面全景图像显式地生成合成图像,并仅从校正后的全景图像中畸变较小的区域检测和描述特征。我们在合成数据上证明,与标准方法相比,该方法在旋转和平移摄像机运动方面都具有优势。我们还通过匹兹堡研究数据集的实验证明了所提出的特征匹配有利于增量SfM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信