Weyl's problem: A computational approach

Isaac Bowser, Ken Kiers, E. Mitchell, J. Kiers
{"title":"Weyl's problem: A computational approach","authors":"Isaac Bowser, Ken Kiers, E. Mitchell, J. Kiers","doi":"10.1119/10.0001657","DOIUrl":null,"url":null,"abstract":"The distribution of eigenvalues of the wave equation in a bounded domain is known as Weyl's problem. We describe several computational projects related to the cumulative state number, defined as the number of states having wavenumber up to a maximum value. This quantity and its derivative, the density of states, have important applications in nuclear physics, degenerate Fermi gases, blackbody radiation, Bose-Einstein condensation and the Casimir effect. Weyl's theorem states that, in the limit of large wavenumbers, the cumulative state number depends only on the volume of the bounding domain and not on its shape. Corrections to this behavior are well known and depend on the surface area of the bounding domain, its curvature and other features. We describe several projects that allow readers to investigate this dependence for three bounding domains - a rectangular box, a sphere, and a circular cylinder. Quasi-one- and two-dimensional systems can be analyzed by considering various limits. The projects have applications in statistical mechanics, but can also be integrated into quantum mechanics, nuclear physics, or computational physics courses.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/10.0001657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The distribution of eigenvalues of the wave equation in a bounded domain is known as Weyl's problem. We describe several computational projects related to the cumulative state number, defined as the number of states having wavenumber up to a maximum value. This quantity and its derivative, the density of states, have important applications in nuclear physics, degenerate Fermi gases, blackbody radiation, Bose-Einstein condensation and the Casimir effect. Weyl's theorem states that, in the limit of large wavenumbers, the cumulative state number depends only on the volume of the bounding domain and not on its shape. Corrections to this behavior are well known and depend on the surface area of the bounding domain, its curvature and other features. We describe several projects that allow readers to investigate this dependence for three bounding domains - a rectangular box, a sphere, and a circular cylinder. Quasi-one- and two-dimensional systems can be analyzed by considering various limits. The projects have applications in statistical mechanics, but can also be integrated into quantum mechanics, nuclear physics, or computational physics courses.
Weyl的问题是:计算方法
波动方程的特征值在有界域中的分布称为Weyl问题。我们描述了几个与累积状态数相关的计算项目,累积状态数被定义为波数达到最大值的状态数。这个量及其导数,即态密度,在核物理学、简并费米气体、黑体辐射、玻色-爱因斯坦凝聚和卡西米尔效应中有着重要的应用。Weyl定理指出,在大波数的极限下,累积状态数仅取决于边界域的体积,而不取决于其形状。对这种行为的修正是众所周知的,它取决于边界域的表面积、曲率和其他特征。我们描述了几个项目,这些项目允许读者研究三个边界域(矩形框、球体和圆柱体)的这种依赖关系。准一维和准二维系统可以通过考虑各种极限来分析。这些项目在统计力学中有应用,但也可以整合到量子力学、核物理或计算物理课程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信