More concordance homomorphisms from knot Floer homology

IF 2 1区 数学
Irving Dai, Jennifer Hom, Matthew Stoffregen, L. Truong
{"title":"More concordance homomorphisms from knot Floer homology","authors":"Irving Dai, Jennifer Hom, Matthew Stoffregen, L. Truong","doi":"10.2140/gt.2021.25.275","DOIUrl":null,"url":null,"abstract":"We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes of knot Floer complexes over the ring $\\mathbb{F}[U, V]/(UV=0)$. We compare our invariants to other concordance homomorphisms coming from knot Floer homology, and discuss applications to topologically slice knots, concordance genus, and concordance unknotting number.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.275","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

We define an infinite family of linearly independent, integer-valued smooth concordance homomorphisms. Our homomorphisms are explicitly computable and rely on local equivalence classes of knot Floer complexes over the ring $\mathbb{F}[U, V]/(UV=0)$. We compare our invariants to other concordance homomorphisms coming from knot Floer homology, and discuss applications to topologically slice knots, concordance genus, and concordance unknotting number.
结花同态的更多一致性同态
我们定义了一个无限族的线性无关的整数值光滑调和同态。我们的同态是显式可计算的,并且依赖于环$\mathbb{F}[U, V]/(UV=0)$上的结花复合体的局部等价类。我们比较了我们的不变量与其他来自结花同源的一致性同态,并讨论了拓扑切片结、一致性属和一致性解结数的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信