{"title":"Essentially iso-retractable modules and rings","authors":"A. K. Chaturvedi, S. Kumar, S. Prakash, N. Kumar","doi":"10.15330/cmp.14.1.76-85","DOIUrl":null,"url":null,"abstract":"A.K. Chaturvedi et al. (2021) call a module $M$ essentially iso-retractable if for every essential submodule $N$ of $M$ there exists an isomorphism $f : M\\rightarrow N.$ We characterize essentially iso-retractable modules, co-semisimple modules ($V$-rings), principal right ideal domains, simple modules and semisimple modules. Over a Noetherian ring, we prove that every essentially iso-retractable module is isomorphic to a direct sum of uniform submodules.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.76-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A.K. Chaturvedi et al. (2021) call a module $M$ essentially iso-retractable if for every essential submodule $N$ of $M$ there exists an isomorphism $f : M\rightarrow N.$ We characterize essentially iso-retractable modules, co-semisimple modules ($V$-rings), principal right ideal domains, simple modules and semisimple modules. Over a Noetherian ring, we prove that every essentially iso-retractable module is isomorphic to a direct sum of uniform submodules.