A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes

IF 0.3 Q4 MECHANICS
I. G. Rusyak, V. Sufiyanov, D. A. Klyukin
{"title":"A one-dimensional mathematical model of barrel vibrations with arbitrary cross-sectional shapes","authors":"I. G. Rusyak, V. Sufiyanov, D. A. Klyukin","doi":"10.17223/19988621/80/12","DOIUrl":null,"url":null,"abstract":"The problem of longitudinal and transverse vibrations of a barrel with arbitrary cross-sectional shapes is considered and solved in the framework of a one-dimensional model. The study shows that the amplitude of transverse vibrations in the vertical plane significantly exceeds that in the horizontal plane. This paper proposes to reduce the amplitude of vibrations by changing the shape of the barrel cross-section, namely by adding stiffeners. The numerical algorithm for solving the problem is developed on the basis of the integro-interpolation method. The verification of the numerical integration method is carried out, and the grid convergence is verified by means of the modeling of barrel vibrations for a 30 mm automatic cannon. The study of the impact of the barrel cross-section shape shows that the use of stiffeners can reduce the initial deflection and the amplitude of muzzle vibrations when firing in bursts. The obtained results demonstrate a narrow spread of projectile departure angles, and, consequently, the improved shooting accuracy of the automatic cannon.","PeriodicalId":43729,"journal":{"name":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","volume":"26 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Tomskogo Gosudarstvennogo Universiteta-Matematika i Mekhanika-Tomsk State University Journal of Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/19988621/80/12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of longitudinal and transverse vibrations of a barrel with arbitrary cross-sectional shapes is considered and solved in the framework of a one-dimensional model. The study shows that the amplitude of transverse vibrations in the vertical plane significantly exceeds that in the horizontal plane. This paper proposes to reduce the amplitude of vibrations by changing the shape of the barrel cross-section, namely by adding stiffeners. The numerical algorithm for solving the problem is developed on the basis of the integro-interpolation method. The verification of the numerical integration method is carried out, and the grid convergence is verified by means of the modeling of barrel vibrations for a 30 mm automatic cannon. The study of the impact of the barrel cross-section shape shows that the use of stiffeners can reduce the initial deflection and the amplitude of muzzle vibrations when firing in bursts. The obtained results demonstrate a narrow spread of projectile departure angles, and, consequently, the improved shooting accuracy of the automatic cannon.
具有任意截面形状的桶振动的一维数学模型
在一维模型的框架下,研究了任意截面形状筒体的纵向和横向振动问题。研究表明,垂直平面的横向振动幅值明显大于水平平面。本文提出通过改变筒体截面形状,即增加加强筋来减小振动幅度。在积分插值法的基础上,提出了求解该问题的数值算法。对数值积分方法进行了验证,并通过对某30mm自动炮身管振动的建模验证了网格的收敛性。对枪管截面形状影响的研究表明,加劲板的使用可以减小爆轰射击时的初始偏转和炮口振动幅度。计算结果表明,该方法减小了弹丸偏离角的范围,从而提高了自动火炮的射击精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信