Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Savita Shetty, A. Patil
{"title":"Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images","authors":"Savita Shetty, A. Patil","doi":"10.4018/ijghpc.320474","DOIUrl":null,"url":null,"abstract":"Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"32 1","pages":"1-21"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.320474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Earlier detection and classification of squamous cell carcinoma (OSCC) is a widespread issue for efficient treatment, enhancing survival rate, and reducing the death rate. Thus, it becomes necessary to design effective diagnosis models for assisting pathologists in the OSCC examination process. In recent times, deep learning (DL) models have exhibited considerable improvement in the design of effective computer-aided diagnosis models for OSCC using histopathological images. In this view, this paper develops a novel duck pack optimization with deep transfer learning enabled oral squamous cell carcinoma classification (DPODTL-OSC3) model using histopathological images. The goal of the DPODTL-OSC3 model is to improve the classifier outcomes of OSCC using histopathological images into normal and cancerous class labels. Finally, the variational autoencoder (VAE) model is utilized for the detection and classification of OSCC. The performance validation and comparative result analysis for the DPODTL-OSC3 model are tested using a histopathological imaging database.
基于深度迁移学习的口腔鳞状细胞癌组织病理图像分类鸭群优化
早期发现和分类鳞状细胞癌(OSCC)是一个广泛的问题,有效的治疗,提高生存率,降低死亡率。因此,有必要设计有效的诊断模型,以协助病理学家在OSCC检查过程中。近年来,深度学习(DL)模型在利用组织病理图像设计有效的OSCC计算机辅助诊断模型方面表现出相当大的进步。鉴于此,本文开发了一种新的鸭群优化方法,该方法使用组织病理学图像使用深度迁移学习支持口腔鳞状细胞癌分类(DPODTL-OSC3)模型。DPODTL-OSC3模型的目标是利用组织病理学图像对正常和癌性分类标签来改善OSCC的分类结果。最后,利用变分自编码器(VAE)模型对OSCC进行检测和分类。使用组织病理学成像数据库对DPODTL-OSC3模型进行性能验证和比较结果分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信