A Nonparametric Local Volatility Model for Swaptions Smile

D. Gatarek, J. Jabłecki
{"title":"A Nonparametric Local Volatility Model for Swaptions Smile","authors":"D. Gatarek, J. Jabłecki","doi":"10.21314/JCF.2018.343","DOIUrl":null,"url":null,"abstract":"We propose a nonparametric local volatility Cheyette model and apply it to pricing interest rate swaptions. Concretely, given market prices of swaptions, we show how to construct a unique diffusion process consistent with these prices. We then link the resulting local volatility to the dynamics of the entire interest rate curve. The model preserves completeness and allows consistent pricing of illiquid, out-of-the-money and exotic interest rate products. The model is relatively straightforward to implement and calibrate and less involved than stochastic volatility approaches.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":"53 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21314/JCF.2018.343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a nonparametric local volatility Cheyette model and apply it to pricing interest rate swaptions. Concretely, given market prices of swaptions, we show how to construct a unique diffusion process consistent with these prices. We then link the resulting local volatility to the dynamics of the entire interest rate curve. The model preserves completeness and allows consistent pricing of illiquid, out-of-the-money and exotic interest rate products. The model is relatively straightforward to implement and calibrate and less involved than stochastic volatility approaches.
交换Smile的非参数局部波动率模型
提出了一种非参数局部波动率Cheyette模型,并将其应用于利率掉期定价。具体而言,在给定互换市场价格的情况下,我们展示了如何构建一个与这些价格相一致的唯一扩散过程。然后,我们将由此产生的局部波动与整个利率曲线的动态联系起来。该模型保持了完整性,并允许对非流动性、非货币性和外来利率产品进行一致的定价。与随机波动率方法相比,该模型的实现和校准相对简单,而且涉及较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信