{"title":"Fuzzy goal programming technique for multi-objective indefinite quadratic bilevel programming problem","authors":"R. Arora","doi":"10.24425/acs.2020.135847","DOIUrl":null,"url":null,"abstract":"Bilevel programming problem is a non-convex two stage decision making process in which the constraint region of upper level is determined by the lower level problem. In this paper, a multi-objective indefinite quadratic bilevel programming problem (MOIQBP) is presented. The defined problem (MOIQBP) has multi-objective functions at both the levels. The followers are independent at the lower level. A fuzzy goal programming methodology is employed which minimizes the sum of the negative deviational variables of both the levels to obtain highest membership value of each of the fuzzy goal. The membership function for the objective functions at each level is defined. As these membership functions are quadratic they are linearized by Taylor series approximation. The membership function for the decision variables at both levels is also determined. The individual optimal solution of objective functions at each level is used for formulating an integrated pay-off matrix. The aspiration levels for the decision makers are ascertained from this matrix. An algorithm is developed to obtain a compromise optimal solution for (MOIQBP). A numerical example is exhibited to evince the algorithm. The computing software LINGO 17.0 has been used for solving this problem.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2020.135847","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Bilevel programming problem is a non-convex two stage decision making process in which the constraint region of upper level is determined by the lower level problem. In this paper, a multi-objective indefinite quadratic bilevel programming problem (MOIQBP) is presented. The defined problem (MOIQBP) has multi-objective functions at both the levels. The followers are independent at the lower level. A fuzzy goal programming methodology is employed which minimizes the sum of the negative deviational variables of both the levels to obtain highest membership value of each of the fuzzy goal. The membership function for the objective functions at each level is defined. As these membership functions are quadratic they are linearized by Taylor series approximation. The membership function for the decision variables at both levels is also determined. The individual optimal solution of objective functions at each level is used for formulating an integrated pay-off matrix. The aspiration levels for the decision makers are ascertained from this matrix. An algorithm is developed to obtain a compromise optimal solution for (MOIQBP). A numerical example is exhibited to evince the algorithm. The computing software LINGO 17.0 has been used for solving this problem.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.