Number-theoretic functions for Gaussian integers

Nikita Arskyi
{"title":"Number-theoretic functions for Gaussian integers","authors":"Nikita Arskyi","doi":"10.17721/1812-5409.2023/1.1","DOIUrl":null,"url":null,"abstract":"The classical number-theoretic functions – a number of divisors τ(n), sum of the divisors σ(n) and product of the divisors π(n) of a positive integer n – were generalized to the ring Z[i] of Gaussian integers. For the evaluation of the corresponding functions τ*(α), σ*m(α) and π*(α), obtained were the explicit formulae that use the canonical representation of α. A number of properties of these functions were studied, in particular, estimates from above for the functions τ*(α) and σ*m(α) and the properties connected with divisibility of their values by certain numbers. Researched are also sums of products of powers of the divisors for α∈Z[i].","PeriodicalId":33822,"journal":{"name":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnik Kiivs''kij nacional''nij universitet imeni Tarasa Sevcenka Istoria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/1812-5409.2023/1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classical number-theoretic functions – a number of divisors τ(n), sum of the divisors σ(n) and product of the divisors π(n) of a positive integer n – were generalized to the ring Z[i] of Gaussian integers. For the evaluation of the corresponding functions τ*(α), σ*m(α) and π*(α), obtained were the explicit formulae that use the canonical representation of α. A number of properties of these functions were studied, in particular, estimates from above for the functions τ*(α) and σ*m(α) and the properties connected with divisibility of their values by certain numbers. Researched are also sums of products of powers of the divisors for α∈Z[i].
高斯整数的数论函数
将经典数论函数——正整数n的若干除数τ(n)、除数σ(n)和除数π(n)的乘积——推广到高斯整数环Z[i]。对于相应的函数τ*(α)、σ*m(α)和π*(α)的求值,得到了使用α的正则表示的显式公式。本文研究了这些函数的一些性质,特别是从上面给出的τ*(α)和σ*m(α)函数的估计,以及它们的值可被某些数整除的性质。研究了α∈Z[i]的除数幂积的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信