The Diffusion-KLMS Algorithm

R. Mitra, V. Bhatia
{"title":"The Diffusion-KLMS Algorithm","authors":"R. Mitra, V. Bhatia","doi":"10.1109/ICIT.2014.33","DOIUrl":null,"url":null,"abstract":"The diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"96 1","pages":"256-259"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The diffusion least mean squares (LMS) [1] algorithm gives faster convergence than the original LMS in a distributed network. Also, it outperforms other distributed LMS algorithms like spatial LMS and incremental LMS [2]. However, both LMS and diffusion-LMS are not applicable in non-linear environments where data may not be linearly separable [3]. A variant of LMS called kernel-LMS (KLMS) has been proposed in [3] for such non-linearities. We intend to propose the kernelised version of diffusion-LMS in this paper.
扩散- klms算法
在分布式网络中,扩散最小均方(LMS)[1]算法比原始LMS算法收敛速度更快。此外,它优于其他分布式LMS算法,如空间LMS和增量LMS[2]。然而,LMS和扩散-LMS都不适用于数据可能不可线性分离的非线性环境[3]。针对这种非线性,[3]中提出了LMS的一种变体,称为核LMS (KLMS)。我们打算在本文中提出扩散- lms的核化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信