Note on Krull's conjecture

Habte Gebru, Ryuki Matsuda
{"title":"Note on Krull's conjecture","authors":"Habte Gebru, Ryuki Matsuda","doi":"10.5036/MJIU.31.37","DOIUrl":null,"url":null,"abstract":"Krull in [7] conjectured that the answer to this conjecture is true, at least for the case where F is the quotient field of D and D is completely integrally closed. Nakayama [9, 10], Ohm (cf. [5, p. 232]) and Sheldon [12] gave counter examples to the conjecture. Krull proved that the conjecture holds true for one dimensional completely integrally closed quasi-local domains [8, Satz 1]. In this paper, among other things, we will prove the following facts: we characterize one dimensional Prufer domains (Corollary 2). Based on Gilmer's result [6], we prove that if F is an extension field of the quotient field K of D, then C(D), the complete integral closure of D, is the intersection of valuation","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"74 1","pages":"37-42"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.31.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Krull in [7] conjectured that the answer to this conjecture is true, at least for the case where F is the quotient field of D and D is completely integrally closed. Nakayama [9, 10], Ohm (cf. [5, p. 232]) and Sheldon [12] gave counter examples to the conjecture. Krull proved that the conjecture holds true for one dimensional completely integrally closed quasi-local domains [8, Satz 1]. In this paper, among other things, we will prove the following facts: we characterize one dimensional Prufer domains (Corollary 2). Based on Gilmer's result [6], we prove that if F is an extension field of the quotient field K of D, then C(D), the complete integral closure of D, is the intersection of valuation
注意Krull的猜想
Krull在[7]中推测这个猜想的答案是正确的,至少对于F是D的商域且D是完全整闭的情况是正确的。Nakayama[9,10]、Ohm(参见[5,p. 232])和Sheldon[12]给出了反例。Krull证明了该猜想在一维完全积分闭拟局部域上成立[8,Satz 1]。在本文中,我们将证明以下事实:我们刻画了一维Prufer域(推论2)。基于Gilmer的结果[6],我们证明了如果F是D的商域K的扩展域,那么D的完全积分闭包C(D)是赋值的交集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信