A New Model and Simple Algorithms for Multi-label Mumford-Shah Problems

Byung-Woo Hong, Zhaojin Lu, G. Sundaramoorthi
{"title":"A New Model and Simple Algorithms for Multi-label Mumford-Shah Problems","authors":"Byung-Woo Hong, Zhaojin Lu, G. Sundaramoorthi","doi":"10.1109/CVPR.2013.161","DOIUrl":null,"url":null,"abstract":"In this work, we address the multi-label Mumford-Shah problem, i.e., the problem of jointly estimating a partitioning of the domain of the image, and functions defined within regions of the partition. We create algorithms that are efficient, robust to undesirable local minima, and are easy-to-implement. Our algorithms are formulated by slightly modifying the underlying statistical model from which the multi-label Mumford-Shah functional is derived. The advantage of this statistical model is that the underlying variables: the labels and the functions are less coupled than in the original formulation, and the labels can be computed from the functions with more global updates. The resulting algorithms can be tuned to the desired level of locality of the solution: from fully global updates to more local updates. We demonstrate our algorithm on two applications: joint multi-label segmentation and denoising, and joint multi-label motion segmentation and flow estimation. We compare to the state-of-the-art in multi-label Mumford-Shah problems and show that we achieve more promising results.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"8 1","pages":"1219-1226"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, we address the multi-label Mumford-Shah problem, i.e., the problem of jointly estimating a partitioning of the domain of the image, and functions defined within regions of the partition. We create algorithms that are efficient, robust to undesirable local minima, and are easy-to-implement. Our algorithms are formulated by slightly modifying the underlying statistical model from which the multi-label Mumford-Shah functional is derived. The advantage of this statistical model is that the underlying variables: the labels and the functions are less coupled than in the original formulation, and the labels can be computed from the functions with more global updates. The resulting algorithms can be tuned to the desired level of locality of the solution: from fully global updates to more local updates. We demonstrate our algorithm on two applications: joint multi-label segmentation and denoising, and joint multi-label motion segmentation and flow estimation. We compare to the state-of-the-art in multi-label Mumford-Shah problems and show that we achieve more promising results.
多标签Mumford-Shah问题的一个新模型和简单算法
在这项工作中,我们解决了多标签Mumford-Shah问题,即联合估计图像域的分区问题,以及在分区区域内定义的函数。我们创建的算法是高效的,对不希望的局部最小值具有鲁棒性,并且易于实现。我们的算法是通过稍微修改底层统计模型来制定的,从这个模型中推导出了多标签Mumford-Shah函数。这个统计模型的优点是底层变量:标签和函数的耦合比原始公式少,并且标签可以从具有更多全局更新的函数中计算出来。得到的算法可以调优到解决方案所需的局部性级别:从完全全局更新到更多的局部更新。我们在联合多标签分割和去噪、联合多标签运动分割和流量估计两个方面展示了我们的算法。我们比较了最先进的多标签Mumford-Shah问题,并表明我们取得了更有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信