Evaluations of Link Polynomials and Recent Constructions in Heegaard Floer Theory

IF 0.8 3区 数学 Q2 MATHEMATICS
Larry Gu, A. Manion
{"title":"Evaluations of Link Polynomials and Recent Constructions in Heegaard Floer Theory","authors":"Larry Gu, A. Manion","doi":"10.1307/mmj/20216061","DOIUrl":null,"url":null,"abstract":"Using a definition of Euler characteristic for fractionally-graded complexes based on roots of unity, we show that the Euler characteristics of Dowlin's\"$\\mathfrak{sl}(n)$-like\"Heegaard Floer knot invariants $HFK_n$ recover both Alexander polynomial evaluations and $\\mathfrak{sl}(n)$ polynomial evaluations at certain roots of unity for links in $S^3$. We show that the equality of these evaluations can be viewed as the decategorified content of the conjectured spectral sequences relating $\\mathfrak{sl}(n)$ homology and $HFK_n$.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"24 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216061","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Using a definition of Euler characteristic for fractionally-graded complexes based on roots of unity, we show that the Euler characteristics of Dowlin's"$\mathfrak{sl}(n)$-like"Heegaard Floer knot invariants $HFK_n$ recover both Alexander polynomial evaluations and $\mathfrak{sl}(n)$ polynomial evaluations at certain roots of unity for links in $S^3$. We show that the equality of these evaluations can be viewed as the decategorified content of the conjectured spectral sequences relating $\mathfrak{sl}(n)$ homology and $HFK_n$.
链接多项式的评价及其在heegard flower理论中的最新构造
利用基于单位根的分数梯度复合体欧拉特征的定义,我们证明了Dowlin的“$\mathfrak{sl}(n)$类”heeggaard flower结不变量$HFK_n$的欧拉特征恢复了$S^3$中连杆在一定单位根处的Alexander多项式求值和$\mathfrak{sl}(n)$多项式求值。我们证明了这些评价的相等性可以看作是与$\mathfrak{sl}(n)$同源和$HFK_n$相关的推测谱序列的非分类内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信