Convex Algebraic Geometry of Curvature Operators

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
R. G. Bettiol, Mario Kummer, R. Mendes
{"title":"Convex Algebraic Geometry of Curvature Operators","authors":"R. G. Bettiol, Mario Kummer, R. Mendes","doi":"10.1137/20M1350777","DOIUrl":null,"url":null,"abstract":"We study the structure of the set of algebraic curvature operators satisfying a sectional curvature bound under the light of the emerging field of Convex Algebraic Geometry. More precisely, we determine in which dimensions $n$ this convex semialgebraic set is a spectrahedron or a spectrahedral shadow; in particular, for $n\\geq5$, these give new counter-examples to the Helton--Nie Conjecture. Moreover, efficient algorithms are provided if $n=4$ to test membership in such a set. For $n\\geq5$, algorithms using semidefinite programming are obtained from hierarchies of inner approximations by spectrahedral shadows and outer relaxations by spectrahedra.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1350777","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

We study the structure of the set of algebraic curvature operators satisfying a sectional curvature bound under the light of the emerging field of Convex Algebraic Geometry. More precisely, we determine in which dimensions $n$ this convex semialgebraic set is a spectrahedron or a spectrahedral shadow; in particular, for $n\geq5$, these give new counter-examples to the Helton--Nie Conjecture. Moreover, efficient algorithms are provided if $n=4$ to test membership in such a set. For $n\geq5$, algorithms using semidefinite programming are obtained from hierarchies of inner approximations by spectrahedral shadows and outer relaxations by spectrahedra.
曲率算子的凸代数几何
在凸代数几何新兴领域的背景下,研究了满足截面曲率界的代数曲率算子集的结构。更准确地说,我们决定在哪个维度 $n$ 这个凸半代数集是一个光谱面体或一个光谱面体阴影;特别是,对于 $n\geq5$,这些都为赫尔顿-聂猜想提供了新的反例。此外,给出了有效的算法 $n=4$ 测试:测试这样一个集合中的成员因为 $n\geq5$,利用半定规划的算法由光谱面阴影的内部逼近和光谱面体的外部松弛的层次结构得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信