Interfacial Characteristics and Formation Mechanisms of Copper–steel Multimaterial Structures Fabricated via Laser Powder Bed Fusion Using Different Building Strategies

Linqing Liu , Di Wang , Guowei Deng , Yongqiang Yang , Jie Chen , Jinrong Tang , Yonggang Wang , Yang Liu , Xusheng Yang , Yicha Zhang
{"title":"Interfacial Characteristics and Formation Mechanisms of Copper–steel Multimaterial Structures Fabricated via Laser Powder Bed Fusion Using Different Building Strategies","authors":"Linqing Liu ,&nbsp;Di Wang ,&nbsp;Guowei Deng ,&nbsp;Yongqiang Yang ,&nbsp;Jie Chen ,&nbsp;Jinrong Tang ,&nbsp;Yonggang Wang ,&nbsp;Yang Liu ,&nbsp;Xusheng Yang ,&nbsp;Yicha Zhang","doi":"10.1016/j.cjmeam.2022.100045","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) is an innovative method for manufacturing multimaterial components with high geometrical resolution. The LPBF-printing sequences of materials may be diverse in the actual design and application of multimaterial components. In this study, multimaterial copper (CuSn10)–steel (316 L) structures are printed using different building strategies (printing 316 L on CuSn10 and printing CuSn10 on 316 L) via LPBF, and the characteristics of two interfaces (the 316 L/CuSn10 or “L/C” and CuSn10/316 L or “C/L” interfaces) are investigated. Subsequently, the interfacial melting mode and formation mechanisms are discussed. At the L/C interface, the keyhole melting mode induced by the high volumetric energy density (<em>E</em><sub>L/</sub><sub>C</sub> = 319.4 J/mm<sup>3</sup>) results in a large penetration depth in the pre-solidified layer and enhances laser energy absorption, thus promoting the extensive migration of materials and intense intermixing of elements to form a wide diffusion zone (∼400 μm). At the C/L interface, the conduction mode induced by the low volumetric energy density (<em>E</em><sub>C/</sub><sub>L</sub> = 74.1 J/mm<sup>3</sup>) results in a narrow diffusion zone (∼160 μm). The interfacial defects observed are primarily cracks and pores. More cracks appeared at the C/L interface, which is attributable to the weak bonding strength of the narrow diffusion zone. This study provides guidance and reference for the design and manufacturing of multimaterial components via LPBF using different building strategies.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"1 3","pages":"Article 100045"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772665722000290/pdfft?md5=8a81579a035269c230b352258e612744&pid=1-s2.0-S2772665722000290-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665722000290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Laser powder bed fusion (LPBF) is an innovative method for manufacturing multimaterial components with high geometrical resolution. The LPBF-printing sequences of materials may be diverse in the actual design and application of multimaterial components. In this study, multimaterial copper (CuSn10)–steel (316 L) structures are printed using different building strategies (printing 316 L on CuSn10 and printing CuSn10 on 316 L) via LPBF, and the characteristics of two interfaces (the 316 L/CuSn10 or “L/C” and CuSn10/316 L or “C/L” interfaces) are investigated. Subsequently, the interfacial melting mode and formation mechanisms are discussed. At the L/C interface, the keyhole melting mode induced by the high volumetric energy density (EL/C = 319.4 J/mm3) results in a large penetration depth in the pre-solidified layer and enhances laser energy absorption, thus promoting the extensive migration of materials and intense intermixing of elements to form a wide diffusion zone (∼400 μm). At the C/L interface, the conduction mode induced by the low volumetric energy density (EC/L = 74.1 J/mm3) results in a narrow diffusion zone (∼160 μm). The interfacial defects observed are primarily cracks and pores. More cracks appeared at the C/L interface, which is attributable to the weak bonding strength of the narrow diffusion zone. This study provides guidance and reference for the design and manufacturing of multimaterial components via LPBF using different building strategies.

不同构建策略下激光粉末床熔敷铜-钢复合材料结构的界面特性及形成机理
激光粉末床熔融是一种制造高几何分辨率多材料部件的新方法。在多材料部件的实际设计和应用中,材料的lpbf打印顺序可能是多种多样的。在本研究中,采用不同的构建策略(在CuSn10上打印316l和在316l上打印CuSn10)通过LPBF打印多材料铜(CuSn10) -钢(316l)结构,并研究了两种界面(316l /CuSn10或“L/C”和CuSn10/316 L或“C/L”界面)的特性。讨论了界面熔融模式和形成机理。在L/C界面处,高体积能量密度(EL/C = 319.4 J/mm3)诱导的锁孔熔化模式使预固化层穿透深度大,增强了激光能量吸收,促进了材料的广泛迁移和元素的强烈混合,形成宽扩散区(~ 400 μm)。在C/L界面,低体积能量密度(EC/L = 74.1 J/mm3)诱导的传导模式导致了一个狭窄的扩散区(~ 160 μm)。观察到的界面缺陷主要是裂纹和气孔。在C/L界面处出现较多裂纹,这是由于窄扩散区结合强度较弱所致。本研究为采用不同建造策略的LPBF多材料构件的设计和制造提供了指导和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信