{"title":"Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System","authors":"K. Mukherjee, P. Jana","doi":"10.9790/4861-0901019095","DOIUrl":null,"url":null,"abstract":"Using short-time dynamics and analytical solution of Heisenberg equation of motion for the Hamiltonian of quadratically-coupled optomechanical system for different field modes, we have investigated the existence of higher-order single mode squeezing, sum squeezing and difference squeezing in absence of driving and dissipation. Depth of squeezing increases with order number for higher-order single mode squeezing. Squeezing factor exhibits a series of revival-collapse phenomena for single mode, which becomes more pronounced as order number increases. In case of sum squeezing amounts of squeezing is greater than single mode higher-order squeezing (n = 2). It is also greater than from difference squeezing for same set of interaction parameters. Sum squeezing is prominently better for extracting information regarding squeezing.","PeriodicalId":14502,"journal":{"name":"IOSR Journal of Applied Physics","volume":"42 1","pages":"90-95"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/4861-0901019095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Using short-time dynamics and analytical solution of Heisenberg equation of motion for the Hamiltonian of quadratically-coupled optomechanical system for different field modes, we have investigated the existence of higher-order single mode squeezing, sum squeezing and difference squeezing in absence of driving and dissipation. Depth of squeezing increases with order number for higher-order single mode squeezing. Squeezing factor exhibits a series of revival-collapse phenomena for single mode, which becomes more pronounced as order number increases. In case of sum squeezing amounts of squeezing is greater than single mode higher-order squeezing (n = 2). It is also greater than from difference squeezing for same set of interaction parameters. Sum squeezing is prominently better for extracting information regarding squeezing.