Nonlinear Weighted Directed Acyclic Graph and A Priori Estimates for Neural Networks

IF 1.9 Q1 MATHEMATICS, APPLIED
Yuqing Li, Tao Luo, Chao Ma
{"title":"Nonlinear Weighted Directed Acyclic Graph and A Priori Estimates for Neural Networks","authors":"Yuqing Li, Tao Luo, Chao Ma","doi":"10.1137/21M140955","DOIUrl":null,"url":null,"abstract":"In an attempt to better understand structural benefits and generalization power of deep neural networks, we firstly present a novel graph theoretical formulation of neural network models, including fully connected, residual network (ResNet) and densely connected networks (DenseNet). Secondly, we extend the error analysis of the population risk for two layer network \\cite{ew2019prioriTwo} and ResNet \\cite{e2019prioriRes} to DenseNet, and show further that for neural networks satisfying certain mild conditions, similar estimates can be obtained. These estimates are a priori in nature since they depend sorely on the information prior to the training process, in particular, the bounds for the estimation errors are independent of the input dimension.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"2 1","pages":"694-720"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21M140955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In an attempt to better understand structural benefits and generalization power of deep neural networks, we firstly present a novel graph theoretical formulation of neural network models, including fully connected, residual network (ResNet) and densely connected networks (DenseNet). Secondly, we extend the error analysis of the population risk for two layer network \cite{ew2019prioriTwo} and ResNet \cite{e2019prioriRes} to DenseNet, and show further that for neural networks satisfying certain mild conditions, similar estimates can be obtained. These estimates are a priori in nature since they depend sorely on the information prior to the training process, in particular, the bounds for the estimation errors are independent of the input dimension.
神经网络的非线性加权有向无环图和先验估计
为了更好地理解深度神经网络的结构优势和泛化能力,我们首先提出了一种新的神经网络模型的图理论公式,包括全连接、残差网络(ResNet)和密集连接网络(DenseNet)。其次,我们将两层网络\cite{ew2019prioriTwo}和ResNet \cite{e2019prioriRes}的人口风险误差分析扩展到DenseNet,进一步证明对于满足一定温和条件的神经网络,可以得到类似的估计。这些估计本质上是先验的,因为它们完全依赖于训练过程之前的信息,特别是,估计误差的界限与输入维度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信