Quantitative analysis of finite-difference approximations of free-discontinuity problems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Annika Bach, Andrea Braides, C. Zeppieri
{"title":"Quantitative analysis of finite-difference approximations of free-discontinuity problems","authors":"Annika Bach, Andrea Braides, C. Zeppieri","doi":"10.4171/ifb/443","DOIUrl":null,"url":null,"abstract":"Motivated by applications to image reconstruction, in this paper we analyse a \\emph{finite-difference discretisation} of the Ambrosio-Tortorelli functional. Denoted by $\\varepsilon$ the elliptic-approximation parameter and by $\\delta$ the discretisation step-size, we fully describe the relative impact of $\\varepsilon$ and $\\delta$ in terms of $\\Gamma$-limits for the corresponding discrete functionals, in the three possible scaling regimes. We show, in particular, that when $\\varepsilon$ and $\\delta$ are of the same order, the underlying lattice structure affects the $\\Gamma$-limit which turns out to be an anisotropic free-discontinuity functional.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/443","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Motivated by applications to image reconstruction, in this paper we analyse a \emph{finite-difference discretisation} of the Ambrosio-Tortorelli functional. Denoted by $\varepsilon$ the elliptic-approximation parameter and by $\delta$ the discretisation step-size, we fully describe the relative impact of $\varepsilon$ and $\delta$ in terms of $\Gamma$-limits for the corresponding discrete functionals, in the three possible scaling regimes. We show, in particular, that when $\varepsilon$ and $\delta$ are of the same order, the underlying lattice structure affects the $\Gamma$-limit which turns out to be an anisotropic free-discontinuity functional.
自由不连续问题有限差分近似的定量分析
在图像重建应用的激励下,本文分析了Ambrosio-Tortorelli泛函的\emph{有限差分离散化}。用椭圆近似参数$\varepsilon$和离散步长$\delta$表示,我们充分描述了$\varepsilon$和$\delta$在三种可能的标度体系中对应的离散泛函的$\Gamma$ -极限的相对影响。我们特别指出,当$\varepsilon$和$\delta$是同一阶时,底层晶格结构会影响$\Gamma$ -极限,这是一个各向异性的自由不连续泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信