Nanocellulose/Nanodiamond Hybrids: A Review

Macromol Pub Date : 2023-06-15 DOI:10.3390/macromol3020024
C. Uşurelu, D. Panaitescu
{"title":"Nanocellulose/Nanodiamond Hybrids: A Review","authors":"C. Uşurelu, D. Panaitescu","doi":"10.3390/macromol3020024","DOIUrl":null,"url":null,"abstract":"Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating different metals, metal oxides or carbon nanomaterials, with the formation of multifunctional hybrids. Nanocellulose–nanocarbon hybrids are emerging nanomaterials that can respond to many current challenges in areas such as water purification, energy storage and conversion, or biomedicine for drug delivery, tissue engineering, antitumor and antimicrobial therapies, and many others. Although nanocellulose–nanodiamonds hybrids are still in their infancy, these nanomaterials are extremely promising for applications requiring good thermal conductivity and mechanical strength along with optical transparency. A strong increase in the thermal conductivity of a nanocellulose film of about 150 times was obtained after the addition of 90 wt% single-crystal nanodiamonds and a 70% increase in the Young’s modulus of nanocellulose films was produced by the addition of 5 wt% nanodiamonds. Therefore, in this review, data related to the manufacturing routes, main properties, and applications of nanocellulose–nanodiamonds hybrids are presented and discussed. This review paves the way for new methods and procedures to obtain nanocellulose–nanodiamonds hybrids better adapted to practical needs.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol3020024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating different metals, metal oxides or carbon nanomaterials, with the formation of multifunctional hybrids. Nanocellulose–nanocarbon hybrids are emerging nanomaterials that can respond to many current challenges in areas such as water purification, energy storage and conversion, or biomedicine for drug delivery, tissue engineering, antitumor and antimicrobial therapies, and many others. Although nanocellulose–nanodiamonds hybrids are still in their infancy, these nanomaterials are extremely promising for applications requiring good thermal conductivity and mechanical strength along with optical transparency. A strong increase in the thermal conductivity of a nanocellulose film of about 150 times was obtained after the addition of 90 wt% single-crystal nanodiamonds and a 70% increase in the Young’s modulus of nanocellulose films was produced by the addition of 5 wt% nanodiamonds. Therefore, in this review, data related to the manufacturing routes, main properties, and applications of nanocellulose–nanodiamonds hybrids are presented and discussed. This review paves the way for new methods and procedures to obtain nanocellulose–nanodiamonds hybrids better adapted to practical needs.
纳米纤维素/纳米金刚石杂化研究进展
纳米纤维素可以从低成本来源获得,由于其生物可降解性、生物相容性、低重量、大比表面积以及良好的机械和光学性能,在过去的几十年里得到了广泛的研究。通过加入不同的金属、金属氧化物或碳纳米材料,纳米纤维素的性能可以大大扩展,形成多功能的杂化物。纳米纤维素-纳米碳混合材料是一种新兴的纳米材料,可以应对当前许多领域的挑战,如水净化、能量储存和转化、生物医学药物输送、组织工程、抗肿瘤和抗菌治疗等。虽然纳米纤维素-纳米金刚石的混合材料仍处于起步阶段,但这些纳米材料在需要良好导热性和机械强度以及光学透明度的应用中非常有前途。加入90%重量的单晶纳米金刚石后,纳米纤维素膜的导热系数增加了约150倍,加入5%重量的纳米金刚石后,纳米纤维素膜的杨氏模量增加了70%。因此,本文就纳米纤维素-纳米金刚石杂化材料的制备路线、主要性能及其应用等方面的研究进展进行了综述。这一综述为获得更适合实际需要的纳米纤维素-纳米金刚石杂交体的新方法和新程序铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信