A Generalized Output-Coding Scheme with SVM for Multiclass Microarray Classification

Li Shen, E.C. Tan
{"title":"A Generalized Output-Coding Scheme with SVM for Multiclass Microarray Classification","authors":"Li Shen, E.C. Tan","doi":"10.1142/9781860947292_0021","DOIUrl":null,"url":null,"abstract":"Multiclass cancer classification based on microarray data is described. A generalized output-coding scheme combined with binary classifiers is used. Different coding strategies, decoding functions and feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The effects of these different methods and their combinations are then discussed. The highest testing accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered to be very good when compared with the other researchers’ work.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"205 1","pages":"179-186"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Multiclass cancer classification based on microarray data is described. A generalized output-coding scheme combined with binary classifiers is used. Different coding strategies, decoding functions and feature selection methods are combined and validated on two cancer datasets: GCM and ALL. The effects of these different methods and their combinations are then discussed. The highest testing accuracies achieved are 78% and 100% for the two datasets respectively. The results are considered to be very good when compared with the other researchers’ work.
基于支持向量机的多类微阵列分类的广义输出编码方案
描述了基于微阵列数据的多类别癌症分类。采用了一种结合二值分类器的广义输出编码方案。将不同的编码策略、解码函数和特征选择方法结合在GCM和ALL两个肿瘤数据集上进行验证。然后讨论了这些不同方法及其组合的效果。两个数据集的最高测试精度分别为78%和100%。与其他研究人员的工作相比,这些结果被认为是非常好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信