Fixed sets and fixed points for mappings in generalized $\rm Lim$-spaces of Fréchet

IF 1 Q1 MATHEMATICS
V. Babenko, V. Babenko, O. Kovalenko
{"title":"Fixed sets and fixed points for mappings in generalized $\\rm Lim$-spaces of Fréchet","authors":"V. Babenko, V. Babenko, O. Kovalenko","doi":"10.15330/cmp.15.1.260-269","DOIUrl":null,"url":null,"abstract":"In the article, we axiomatically define generalized $\\rm Lim$-spaces $(X,{\\rm Lim})$, Cauchy structures, contractive mappings and prove an abstract version of the contraction mapping principle. We also consider ways to specify families of Cauchy sequences and contraction conditions using a base in $X^2$, distance-like or sum-like functions with values in some partially ordered set $Y$. We establish fixed set and fixed point theorems for generalized contractions of the Meir-Keeler and Taylor, Ćirić and Caristi types. The obtained results generalize many known fixed point theorems and are new even in many classical situations.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.260-269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the article, we axiomatically define generalized $\rm Lim$-spaces $(X,{\rm Lim})$, Cauchy structures, contractive mappings and prove an abstract version of the contraction mapping principle. We also consider ways to specify families of Cauchy sequences and contraction conditions using a base in $X^2$, distance-like or sum-like functions with values in some partially ordered set $Y$. We establish fixed set and fixed point theorems for generalized contractions of the Meir-Keeler and Taylor, Ćirić and Caristi types. The obtained results generalize many known fixed point theorems and are new even in many classical situations.
广义$\rm Lim$-空间中映射的不动集和不动点
在本文中,我们公理化地定义了广义的$\rm Lim$-空间$(X,{\rm Lim})$、Cauchy结构、压缩映射,并证明了压缩映射原理的一个抽象版本。我们还考虑了用X^2$中的基,类距离或类和函数的值在部分有序集$Y$中指定柯西序列族和收缩条件的方法。我们建立了Meir-Keeler和Taylor, Ćirić和Caristi型广义压缩的不动集定理和不动点定理。所得结果推广了许多已知的不动点定理,甚至在许多经典情况下也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信