Incremental PSVM for underwater target classification with incorporation of new classes

Poonam Panchal, S. Gopi, R. Pradeepa
{"title":"Incremental PSVM for underwater target classification with incorporation of new classes","authors":"Poonam Panchal, S. Gopi, R. Pradeepa","doi":"10.1109/ICCCNT.2013.6726498","DOIUrl":null,"url":null,"abstract":"This paper describes a novel incremental PSVM to incorporate new target class information unavailable previously in the underwater target classification system. It is capable of updating already existing multiclass `One against Rest' Proximal Support Vector Machine classifier on arrival of features of new classes. The performance of the algorithm is studied on real data. Simulation establishes the effectiveness of the algorithm in adding samples of new classes or of existing classes into the training set incrementally without much affecting the storage space and computation.","PeriodicalId":6330,"journal":{"name":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","volume":"3 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2013.6726498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a novel incremental PSVM to incorporate new target class information unavailable previously in the underwater target classification system. It is capable of updating already existing multiclass `One against Rest' Proximal Support Vector Machine classifier on arrival of features of new classes. The performance of the algorithm is studied on real data. Simulation establishes the effectiveness of the algorithm in adding samples of new classes or of existing classes into the training set incrementally without much affecting the storage space and computation.
结合新分类的增量PSVM水下目标分类
本文提出了一种新的增量式PSVM方法,将水下目标分类系统中无法获得的新目标类别信息纳入其中。它能够在新类的特征到来时更新已经存在的多类“One against Rest”近端支持向量机分类器。在实际数据中研究了该算法的性能。仿真验证了该算法在不影响存储空间和计算量的情况下,将新类或现有类的样本增量地添加到训练集中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信