A fast capacitive voltage monitor for low impedance pulse lines

P. Choi, M. Favre
{"title":"A fast capacitive voltage monitor for low impedance pulse lines","authors":"P. Choi, M. Favre","doi":"10.1109/PPC.1995.599723","DOIUrl":null,"url":null,"abstract":"Accurate and reliable electrical measurements are critical issues in high voltage transmission lines for pulse power generators. Capacitive voltage monitoring is a well established technique which is widely used in this type of device. The monitor can operate in the pure capacitive division, or self-integrating mode for direct monitoring of the voltage or as a Ddot probe to measure the time rate of change of voltage. Difficulties exist in trying to improve the high frequency response of these monitors in the environment of a low impedance pulse line with water dielectric. The ultimate goal in capacitive voltage monitoring is a simple design, with good high frequency response, convenient attenuation ratio and long time constant measurement capability. Here we propose a new design for a capacitive voltage monitor which, in principle, satisfies most of the above requirements and is particularly suitable when applied to low impedance high voltage transmission lines. Above all, the design is intrinsically matched to the characteristics of the output cable and simple to implement. In the following, the basic schemes of the capacitive monitor are first discussed in order to highlight the problems with high frequency design. The new design is then presented together with details of construction. Finally, the properties of the proposed monitor obtained from calculation, and circuit simulation are demonstrated.","PeriodicalId":11163,"journal":{"name":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. Tenth IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.1995.599723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Accurate and reliable electrical measurements are critical issues in high voltage transmission lines for pulse power generators. Capacitive voltage monitoring is a well established technique which is widely used in this type of device. The monitor can operate in the pure capacitive division, or self-integrating mode for direct monitoring of the voltage or as a Ddot probe to measure the time rate of change of voltage. Difficulties exist in trying to improve the high frequency response of these monitors in the environment of a low impedance pulse line with water dielectric. The ultimate goal in capacitive voltage monitoring is a simple design, with good high frequency response, convenient attenuation ratio and long time constant measurement capability. Here we propose a new design for a capacitive voltage monitor which, in principle, satisfies most of the above requirements and is particularly suitable when applied to low impedance high voltage transmission lines. Above all, the design is intrinsically matched to the characteristics of the output cable and simple to implement. In the following, the basic schemes of the capacitive monitor are first discussed in order to highlight the problems with high frequency design. The new design is then presented together with details of construction. Finally, the properties of the proposed monitor obtained from calculation, and circuit simulation are demonstrated.
一种用于低阻抗脉冲线路的快速电容式电压监测器
准确可靠的电气测量是脉冲发电机高压输电线路的关键问题。电容式电压监测是一种成熟的技术,广泛应用于这类器件中。监视器可以工作在纯电容分路或自积分模式下直接监测电压或作为Ddot探头测量电压的时间变化率。在含水介质的低阻抗脉冲线环境中,提高这些监测仪的高频响应存在困难。电容式电压监测的最终目标是设计简单,具有良好的高频响应,方便的衰减比和长时间的恒定测量能力。在这里,我们提出了一种新的电容式电压监测仪设计,原则上满足上述大部分要求,特别适用于低阻抗高压输电线路。最重要的是,该设计本质上与输出电缆的特性相匹配,并且易于实现。下面,首先讨论电容式监测器的基本方案,以突出高频设计中的问题。然后,新的设计与施工细节一起呈现。最后,通过计算和电路仿真验证了所提出的监测仪的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信