EEG brain map reconstruction using blind source separation

S. Sanei, A. R. Leyman
{"title":"EEG brain map reconstruction using blind source separation","authors":"S. Sanei, A. R. Leyman","doi":"10.1109/SSP.2001.955265","DOIUrl":null,"url":null,"abstract":"EEG-based brain maps are very useful in anatomical, functional and pathological diagnosis. These images are projections of the energy of the signals in four different frequency bands. Joint approximate diagonalization of eigenmatrices (JADE) is used as an effective tool in the deconvolution of EEG signals prior to spectrum estimation. The algorithm also, restores the noise from the signal as a result of higher order statistics (HOS) estimation. The spectrum is estimated using autoregressive (AR) modelling and pseudo-hot colours are used to represent brain activities. The results show a great enhancement in diagnostic features in the reconstructed images. The overall system also enables real-time reconstruction of the images for patient monitoring purposes.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"97 1","pages":"233-236"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

EEG-based brain maps are very useful in anatomical, functional and pathological diagnosis. These images are projections of the energy of the signals in four different frequency bands. Joint approximate diagonalization of eigenmatrices (JADE) is used as an effective tool in the deconvolution of EEG signals prior to spectrum estimation. The algorithm also, restores the noise from the signal as a result of higher order statistics (HOS) estimation. The spectrum is estimated using autoregressive (AR) modelling and pseudo-hot colours are used to represent brain activities. The results show a great enhancement in diagnostic features in the reconstructed images. The overall system also enables real-time reconstruction of the images for patient monitoring purposes.
基于盲源分离的脑电图脑图重建
基于脑电图的脑图在解剖、功能和病理诊断方面非常有用。这些图像是信号能量在四个不同频段的投影。特征矩阵联合近似对角化(JADE)作为一种有效的工具,在频谱估计之前对脑电信号进行反卷积。该算法还可以通过高阶统计量(HOS)估计从信号中恢复噪声。使用自回归(AR)模型估计光谱,并使用伪热色来表示大脑活动。结果显示重建图像的诊断特征有很大的增强。整个系统还可以实时重建图像,用于患者监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信