Adaptive Iterative Learning Control Mechanism for Nonlinear Systems subject to High-Order Internal Model

W. Zhou, Miao Yu
{"title":"Adaptive Iterative Learning Control Mechanism for Nonlinear Systems subject to High-Order Internal Model","authors":"W. Zhou, Miao Yu","doi":"10.1109/DDCLS.2018.8515997","DOIUrl":null,"url":null,"abstract":"This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial shift problem in iteration domain. Furthermore, the AILC technique is extended to systems with several parameters in discussion. A simulation example confirms the validity of the proposed method.","PeriodicalId":6565,"journal":{"name":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"31 1","pages":"599-604"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2018.8515997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This technical note addresses an adaptive iterative learning control (AILC) problem for nonlinear dynamical systems with partially unknown iteration-varying parameter. Referring to the scheme of state-space, an AILC effort is presented for randomly varying reference tracking together with initial shift problem in iteration domain. Furthermore, the AILC technique is extended to systems with several parameters in discussion. A simulation example confirms the validity of the proposed method.
高阶内模非线性系统的自适应迭代学习控制机制
本文讨论了具有部分未知迭代变参数的非线性动力系统的自适应迭代学习控制问题。在状态空间的基础上,针对随机变参考跟踪和迭代域的初始偏移问题,提出了一种AILC方法。此外,还将AILC技术推广到具有多个参数的系统。仿真算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信