Distributed empirical risk minimization over directed graphs

Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan
{"title":"Distributed empirical risk minimization over directed graphs","authors":"Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan","doi":"10.1109/IEEECONF44664.2019.9049065","DOIUrl":null,"url":null,"abstract":"In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\\mathcal{S}\\mathcal{A}\\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"28 1","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\mathcal{S}\mathcal{A}\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.
有向图上的分布式经验风险最小化
本文提出了有向图上经验风险最小化的随机优化问题。利用一种同时利用行随机权值和列随机权值的新颖信息融合方法,我们提出了一种具有梯度跟踪的分散随机梯度方法$\mathcal{S}\mathcal{a}\mathcal{B}$,并证明了所提出的算法在最优解周围线性收敛到误差球,且步长不变。我们提供了收敛分析的概要以及所提出算法的推广。最后,通过实际数据的实验对理论结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信