{"title":"Distributed empirical risk minimization over directed graphs","authors":"Ran Xin, Anit Kumar Sahu, S. Kar, U. Khan","doi":"10.1109/IEEECONF44664.2019.9049065","DOIUrl":null,"url":null,"abstract":"In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\\mathcal{S}\\mathcal{A}\\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"28 1","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we present stochastic optimization for empirical risk minimization over directed graphs. Using a novel information fusion approach that utilizes both row- and column-stochastic weights simultaneously, we propose $\mathcal{S}\mathcal{A}\mathcal{B}$, a decentralized stochastic gradient method with gradient tracking, and show that the proposed algorithm converges linearly to an error ball around the optimal solution with a constant step-size. We provide a sketch of the convergence analysis as well as the generalization of the proposed algorithm. Finally, we illustrate the theoretical results with the help of experiments with real data.