{"title":"Using restricted transactional memory to build a scalable in-memory database","authors":"Zhaoguo Wang, Hao Qian, Jinyang Li, Haibo Chen","doi":"10.1145/2592798.2592815","DOIUrl":null,"url":null,"abstract":"The recent availability of Intel Haswell processors marks the transition of hardware transactional memory from research toys to mainstream reality. DBX is an in-memory database that uses Intel's restricted transactional memory (RTM) to achieve high performance and good scalability across multi-core machines. The main limitation (and also key to practicality) of RTM is its constrained working set size: an RTM region that reads or writes too much data will always be aborted. The design of DBX addresses this challenge in several ways. First, DBX builds a database transaction layer on top of an underlying shared-memory store. The two layers use separate RTM regions to synchronize shared memory access. Second, DBX uses optimistic concurrency control to separate transaction execution from its commit. Only the commit stage uses RTM for synchronization. As a result, the working set of the RTMs used scales with the meta-data of reads and writes in a database transaction as opposed to the amount of data read/written. Our evaluation using TPC-C workload mix shows that DBX achieves 506,817 transactions per second on a 4-core machine.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"67 1","pages":"26:1-26:15"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2592798.2592815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101
Abstract
The recent availability of Intel Haswell processors marks the transition of hardware transactional memory from research toys to mainstream reality. DBX is an in-memory database that uses Intel's restricted transactional memory (RTM) to achieve high performance and good scalability across multi-core machines. The main limitation (and also key to practicality) of RTM is its constrained working set size: an RTM region that reads or writes too much data will always be aborted. The design of DBX addresses this challenge in several ways. First, DBX builds a database transaction layer on top of an underlying shared-memory store. The two layers use separate RTM regions to synchronize shared memory access. Second, DBX uses optimistic concurrency control to separate transaction execution from its commit. Only the commit stage uses RTM for synchronization. As a result, the working set of the RTMs used scales with the meta-data of reads and writes in a database transaction as opposed to the amount of data read/written. Our evaluation using TPC-C workload mix shows that DBX achieves 506,817 transactions per second on a 4-core machine.