The status of polycyclic group-based cryptography: A survey and open problems

IF 0.1 Q4 MATHEMATICS
Jonathan Gryak, Delaram Kahrobaei
{"title":"The status of polycyclic group-based cryptography: A survey and open problems","authors":"Jonathan Gryak, Delaram Kahrobaei","doi":"10.1515/gcc-2016-0013","DOIUrl":null,"url":null,"abstract":"Abstract Polycyclic groups are natural generalizations of cyclic groups but with more complicated algorithmic properties. They are finitely presented and the word, conjugacy, and isomorphism decision problems are all solvable in these groups. Moreover, the non-virtually nilpotent ones exhibit an exponential growth rate. These properties make them suitable for use in group-based cryptography, which was proposed in 2004 by Eick and Kahrobaei [10]. Since then, many cryptosystems have been created that employ polycyclic groups. These include key exchanges such as non-commutative ElGamal, authentication schemes based on the twisted conjugacy problem, and secret sharing via the word problem. In response, heuristic and deterministic methods of cryptanalysis have been developed, including the length-based and linear decomposition attacks. Despite these efforts, there are classes of infinite polycyclic groups that remain suitable for cryptography. The analysis of algorithms for search and decision problems in polycyclic groups has also been developed. In addition to results for the aforementioned problems we present those concerning polycyclic representations, group morphisms, and orbit decidability. Though much progress has been made, many algorithmic and complexity problems remain unsolved; we conclude with a number of them. Of particular interest is to show that cryptosystems using infinite polycyclic groups are resistant to cryptanalysis on a quantum computer.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"5 1","pages":"171 - 186"},"PeriodicalIF":0.1000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26

Abstract

Abstract Polycyclic groups are natural generalizations of cyclic groups but with more complicated algorithmic properties. They are finitely presented and the word, conjugacy, and isomorphism decision problems are all solvable in these groups. Moreover, the non-virtually nilpotent ones exhibit an exponential growth rate. These properties make them suitable for use in group-based cryptography, which was proposed in 2004 by Eick and Kahrobaei [10]. Since then, many cryptosystems have been created that employ polycyclic groups. These include key exchanges such as non-commutative ElGamal, authentication schemes based on the twisted conjugacy problem, and secret sharing via the word problem. In response, heuristic and deterministic methods of cryptanalysis have been developed, including the length-based and linear decomposition attacks. Despite these efforts, there are classes of infinite polycyclic groups that remain suitable for cryptography. The analysis of algorithms for search and decision problems in polycyclic groups has also been developed. In addition to results for the aforementioned problems we present those concerning polycyclic representations, group morphisms, and orbit decidability. Though much progress has been made, many algorithmic and complexity problems remain unsolved; we conclude with a number of them. Of particular interest is to show that cryptosystems using infinite polycyclic groups are resistant to cryptanalysis on a quantum computer.
基于多环群的密码学的现状:综述和开放问题
多环群是环群的自然推广,但具有更复杂的算法性质。它们是有限表示的,并且词、共轭和同构决策问题在这些组中都是可解的。此外,非几乎零幂的粒子表现出指数增长率。这些属性使它们适合用于基于组的密码学,这是由Eick和Kahrobaei在2004年提出的[10]。从那时起,已经创建了许多使用多环群的密码系统。其中包括密钥交换(如非交换的ElGamal)、基于扭曲共轭问题的身份验证方案以及通过单词问题进行秘密共享。因此,人们开发了启发式和确定性的密码分析方法,包括基于长度的攻击和线性分解攻击。尽管有这些努力,仍然有一些无限多环群仍然适合于密码学。对多环群中搜索和决策问题的算法分析也得到了发展。除了上述问题的结果外,我们还提出了有关多环表示、群态和轨道可决性的结果。尽管取得了很大进展,但许多算法和复杂性问题仍未解决;我们以其中的一些作为结束。特别感兴趣的是证明使用无限多环群的密码系统可以抵抗量子计算机上的密码分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信