Improvement of Dynamic Hybrid Collaborative Filtering Based on Spark

Haorui Li, Qiang Huang
{"title":"Improvement of Dynamic Hybrid Collaborative Filtering Based on Spark","authors":"Haorui Li, Qiang Huang","doi":"10.1109/ICCC47050.2019.9064416","DOIUrl":null,"url":null,"abstract":"Iterative computation due to the advantage of memory computing framework in Spark big data platform, so This paper applies ALS model recommendation algorithm on Spark platform and improves its calculation method. Considering more practical factors to get more accurate result sets, we first use C-Means clustering to classify data preprocessing, so as to reduce the calculation of redundant data and the sparsity of matrix. Secondly, the cosine similarity and Pearson similarity are applied to improve the user similarity calculation. Finally, a mixed recommendation function is constructed. On the Spark distributed large data platform, this method trains and compares the results offline and real-time through MovieLens data set, which shows that it reduces the computing time, improves the efficiency and accuracy of the algorithm.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"198 1","pages":"8-12"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Iterative computation due to the advantage of memory computing framework in Spark big data platform, so This paper applies ALS model recommendation algorithm on Spark platform and improves its calculation method. Considering more practical factors to get more accurate result sets, we first use C-Means clustering to classify data preprocessing, so as to reduce the calculation of redundant data and the sparsity of matrix. Secondly, the cosine similarity and Pearson similarity are applied to improve the user similarity calculation. Finally, a mixed recommendation function is constructed. On the Spark distributed large data platform, this method trains and compares the results offline and real-time through MovieLens data set, which shows that it reduces the computing time, improves the efficiency and accuracy of the algorithm.
基于Spark的动态混合协同过滤的改进
由于Spark大数据平台的内存计算框架具有迭代计算的优势,因此本文将ALS模型推荐算法应用于Spark平台,并对其计算方法进行了改进。为了得到更准确的结果集,考虑到更实际的因素,我们首先使用C-Means聚类对数据进行分类预处理,以减少冗余数据的计算和矩阵的稀疏性。其次,应用余弦相似度和Pearson相似度改进用户相似度计算;最后,构造了一个混合推荐函数。该方法在Spark分布式大数据平台上,通过MovieLens数据集进行离线和实时训练,并对结果进行对比,减少了计算时间,提高了算法的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信