Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\alpha $-magnetohydrodynamic equations

IF 0.5 Q3 MATHEMATICS
I. Omrane, S. Gala, Jae‐Myoung Kim, M. Ragusa
{"title":"Logarithmically improved blow-up criterion for smooth solutions to the Leray-$\\alpha $-magnetohydrodynamic equations","authors":"I. Omrane, S. Gala, Jae‐Myoung Kim, M. Ragusa","doi":"10.5817/AM2019-1-55","DOIUrl":null,"url":null,"abstract":"(1.1)  ∂tv + (u · ∇)v −∆v +∇π + 2∇|B| 2 = (B · ∇)B, ∂tB + (u · ∇)B − (B · ∇)v −∆B = 0, v = (1− α2∆)u, α > 0, div u = div v = divB = 0, (v,B)|t=0 = (v0, B0),div u0 = div v0 = divB0 = 0 in R3, where v : the fluid velocity field, u : “the filtered” fluid velocity, B : the magnetic field and π : the pressure, are the unknowns; α is the lengthscale parameter that represents the width of the filter. Note that the magnetic field is not regularized. It has lately received significant attention in mathematical fluid dynamics due to its connection to three-dimensional incompressible flows. When α→ 0, the model (1.1) reduce to the following MHD equations:","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/AM2019-1-55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

(1.1)  ∂tv + (u · ∇)v −∆v +∇π + 2∇|B| 2 = (B · ∇)B, ∂tB + (u · ∇)B − (B · ∇)v −∆B = 0, v = (1− α2∆)u, α > 0, div u = div v = divB = 0, (v,B)|t=0 = (v0, B0),div u0 = div v0 = divB0 = 0 in R3, where v : the fluid velocity field, u : “the filtered” fluid velocity, B : the magnetic field and π : the pressure, are the unknowns; α is the lengthscale parameter that represents the width of the filter. Note that the magnetic field is not regularized. It has lately received significant attention in mathematical fluid dynamics due to its connection to three-dimensional incompressible flows. When α→ 0, the model (1.1) reduce to the following MHD equations:
Leray-$\alpha $-磁流体动力学方程光滑解的对数改进爆破判据
(1.1)∂电视+ v (u·∇)−∆v +∇π+ 2∇| | 2 = (B·∇)B,∂结核+ (u·∇)B−−(B·∇)v∆B = 0, v =(1−α2∆)u,α> 0,div div u = v = divB = 0, (v, B) | t = 0 = (v0, B0), div情况= div v0 = divB0 = 0 R3, v:流体速度场,u:“过滤”流体速度,B:磁场和π:压力,是未知的;α是表示滤波器宽度的长度尺度参数。注意磁场不是正则化的。由于它与三维不可压缩流动的联系,它最近在数学流体动力学中受到了极大的关注。当α→0时,模型(1.1)简化为如下MHD方程:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信